
1

COMPUTER SIMULATION OF INDIVIDUAL AND GROUPED
MILITARY OBJECTS REDEPLOYMENT

ZBIGNIEW TARAPATA

Institute of Mathematics and Operations Research
Faculty of Cybernetics, Military University of Technology

Kaliskiego Street 2, 00-908 Warsaw
Tel. (022)-685-94-13, Fax. (022)-685-75-39

e-mail : ztarap@isi.wat.waw.pl

A method for redeployment simulation of military objects is considered. An optimization problem of
simultaneous arriving of all redeployed objects to some points is defined and the method of its solving is shown.
Definitions of objects needed to making simulation in object-oriented environment are made known. Methods
of redeployment simulation of individual and grouped objects based on notation of MODSIM II object-oriented
simulation language are proposed.

Introduction

Redeployment simulation of military objects is a basic problem in combat simulators.
Objects movement is very important from the point of view of simulating complex system.
It may have an effect on accuracy, adequateness, effectiveness and other characteristics of
these systems. This problem applies not only in military fields but also, for example in:
transport, telecommunication traffic, computer networks, etc.

The objects movement problem requires algorithms or methods suitable to move
various objects. The algorithms may base on: Dijkstra algorithm [3], algorithms for
determination of the N-th shortest path ([4], [5], [6], [7]), algorithm for determination of the
shortest K-path ([11], [13]) or others ([1], [2], [8]). Result of objects movement algorithms
will be the set of paths on which we will simulate objects movement. In such a case objects
movement plan will be known in advance. But in real combat actions a random modification of
path may be needed in some cases:
• sudden change of decision by commands;
• change of the network status (destruction of a node or arc belonging to the path for some

objects);
Other problem is an appropriate description of the terrain area for which the movement

is carried out. In many cases, the model of it is a network. Depending on: types of moved
objects, preferences of movement methods (individual, grouped) and military actions level we
must build the network based on, e.g. numerical terrain model ([12], [14]).

Taking into consideration the description presented above the purpose of this paper is
to solve the problem of movement simulation of objects which may have various groups with
constraints on parallel movement of objects’ head.

The paper is organized as follows.
In section 1 a model of network in which the movement is carried out is defined. Section 2
contains definition of the problem of simultaneous arriving of all redeployed objects to some
fixed points. In section 3 and 4 methods for individual and grouped objects movement
simulation, respectively, are presented.

1. Model of network

The idea of a network creation (called „trafficable routes network”) for military objects
movement was presented in [12]. Using this, we can describe the network S as follows:

2

D,G=S (1)

where:
G – Berge graph, without loops, describing the structure of S,

GG U,WG = ;

[]
WW'w,wdD

×
= - matrix of distances between the graph nodes, (2)

W= |WG| ; WG - set of the graph nodes, UG - set of the graph arcs.

Let the maximum speeds of K moving objects be v1, v2, ... , vk, ... , vK, respectively. Because
these speeds may be various for each of the objects, so the vector W

Z�Z

of minimum crossing

times of X
Z�Z

arc assumes the following form :
K

'w,w
k

'w,w
2

'w,w
1

'w,w'w,w t,...,t,...,t,tt = , (3)

Z :
*

�
Z ∈
where:














∉∞

∈
ζ⋅ν

=

G'w,w

G'w,w

'w,w

'w,w

k
'w,w

Uu ,

w'= w, 0

Uu ,
)u(

d

t

k

, , K,1k = (4)

The function)(⋅ζ values are in the interval (0,1], and it describes coefficient of speed decrease
in topographical or weather conditions, etc., for a part of the road which represents this arc. In
that case, network S from (1) may be described as follows :

ut,G=S' (5)

where :
=ut WW'w,w]t[× (6)

and 'w,wt is described by (3).

We will utilize network S (1) for finding the shortest paths in the sense of terrain distances,
whereas network S’ (5) will be used for finding the shortest paths in the sense of time.

2. Definition of the objects alignment problem

In practice, during redeployment of many objects we use the so-called alignments lines
which are utilized to align of the moving objects heads, that is to guarantee a relative
parallelness of objects movement. We solve the problem defined below.
We denote

()I k L �N�� L �N�� � � � � L �N�� � � � � L� � U 5N ()k (7)

()T Tk k() (), (),..., (),..., (),
N

= = τ τ τ τ0 1k k k kr Rk (8)

where :
Ik - set of nodes describing the path for the k-th object;
L �N�U - the r-th node on the path for the k-th object;

3

Tk - set of time instances of achieving the nodes belonging to the path for the k-th
object;

)k(rτ - time instance of achieving node)k(r
L by the head of the k-th object,

)k()k(r1+r

1kR,0rK,1k
τ≥τ∀∀

−==
;

Rk+1 - number of nodes belonging to the path of k-th object.

Let
'
kI = { })k(i),...,k(i),...,k(i),k(i ''

p
'
2

'
1 kP (9)

where :
)k(i '

p - the p-th element of 'kI satisfying
N
,∈∀

=
)k(i '

p
k,1p P

,

denote the set of nodes, at which we must align the head of the k-th object in relation to the
heads of other objects.
Let, by analogy

{ })k(),...,k(),...,k(),k(''
p

'
2

'
1 kPττττ=

N
7 (10)

denote a set of demanded time instances of arriving to particular alignment nodes by the k-th
object head.
We make the following assumption :

P1 = P2 = ... = PK

that is, for all objects exists the same number of alignment points (nodes).
At this point we can define the problem as follows :

()∑∑
= =

τ−τ
K

1k 1p
p

'
p

k

)k()k(
P

 min (11)

with the constraints :

K1,=k ,1R,0r ,vv kk
k'

1r,r −=≤+ (12)

K1,=k ,1R,0r , 0v k
k'

1r,r −=>+ (13)

where :

)k('
pτ - an element of (10);

{ }

∑
≤∈

++τ=τ
'r r :r

k'
1r,r

0
p t)k()k(

N5

; (14)

)k(i)k(i : rr '
p

r' =∈=
N

5 ; (compare with (8)) (15)

 k

i,i
k'

1r,r

k
k'

1r,r 1'r'r
t

v

v
t

+⋅=
+

+ ; (16)

 Rk = {0,1,...,r,...,Rk}. (17)

We see that speed k' 1r,rv + of movement on the arcs belonging to the path of the k-th object will

be a decision variable for each of the objects. Solution to this problem is carried out in two
stages. Firstly, we must determine shortest paths for K objects (e.g. using the algorithm from
[13]) and fix Ik and Tk sets. Secondly, we solve a hiperbolic programming problem described by
(11) ÷ (13) using one of the well-known methods (e.g. ellipsoidal algorithm).
Constraint (13) may be replaced by

0v , vv minmin
k'

1r,r >≥+ (18)

if we want to have a lower constraint on the speed of the k-th object.

4

The more practical problem may be one when we have a set of alignment nodes for each of the
objects and want to achieve appropriate alignment nodes at the same time by heads of K
objects. We solve this problem by modification of the objective function (11). Let

k

K

1k
p

p 1,=p ,
K

)k(
P

∑
=

τ
=τ (19)

denote the average of time instances of reaching the p-th alignment nodes by K objects, and

()
k

K

1k

2

pp

p 1,=p ,
K

)k(
3

∑
=

∧ τ−τ
=τ (20)

denote the variance of time instances of reaching the p-th alignment nodes by all objects.
Then, we modify the objective function (11) :

∑
=

∧

τ
kP

1p

p min (21)

with the constraints (12) and (13) or (12) and (18).
This problem may be useful, for example, in the case of movement armoured detachments,
when we want to move tanks in an equal line. At that time, we find the shortest paths for K
objects and determine the alignment nodes for each of the paths and find an arc speed of each
of the objects by solving the problem described by (21) with constraints (12) and (13).

3. Method for movement simulation of individual objects

Movement simulation of military objects will be carried out in the environment of
simulation object oriented language MODSIM II. Therefore, we will consequently use the
notation of this language.

Each of the military objects will be considered as a separate MODSIM object. For
MODSIM objects utilized by the object type „military object” we define the following :

• VehicleObj = OBJECT
nr : INTEGER; (* object number *)
nr_nad : INTEGER; (* number of superior unit *)
v_max : INETEGR; (* maximal speed *)
rodz : BOOLEAN; (* object type: TRUE -centipeded, FALSE- vehicular)

•
• other fields (see attributes vector of military unit in [12])
•

ASK METHOD SetFields(IN nr, nr_nad, v_max : INTEGER; . . .);
ASK METHOD ObjInit();

 END OBJECT;

• Wsp = RECORD
x, y, z : REAL;

 END RECORD;

• NodeObj=OBJECT(ImageObj, QueueObj)
 Translation : PointType;
 Nr : INTEGER;

5

•
• other methods defining the node
•

 END OBJECT

• LinkObj =OBJECT(ImageObj);
 Source, Destination : NodeObj;

•
• other fields and methods defining the network link (arc)
•

 END OBJECT;

• NetworkObj = OBJECT
 NrOfNodes : INTEGER; (* number of nodes *)

ASK METHOD GiveLink(IN node1, node2 : NodeObj): LinkObj;
 ASK METHOD GiveNode(IN nr : INTEGER) : NodeObj;

•
• other methods defining the network
•

 END OBJECT;

• DynVehicleObj = OBJECT(VehicleObj, DynImageObj)
Course, Speed : REAL; (* inherited from MovingObj *)
MovingTo : BOOLEAN; (* inherited from MovingObj *)

RotationSpeed : REAL; (* inherited from RotatingObj*)
RotatingTo : BOOLEAN; (* inherited from RotatingObj*)

ScaleSpeed : REAL; (* inherited from ScalingObj *)
ScalingTo : BOOLEAN; (* inherited from ScalingObj *)

Motion : BOOLEAN; (* inherited from DynamicObj*)

Translation : PointType; (* inherited from GraphicVOb j*)
•
• other fields inherited from superior objects
•

Path : ARRAY INTEGER OF INTEGER; (* the field added by this object *)
CurrNode : NodeObj; .

ASK METHOD SetCourse(IN course : REAL); (*inherited from MovingObj *)
ASK METHOD SetSpeed(IN speed : REAL); .
TELL METHOD MoveTo(IN XDest, YDest : REAL); .
TELL METHOD FollowPath(IN path : PoinArrayType); .

ASK METHOD SetRotationSpeed(IN rotSpeed : REAL);
(* inherited from RotatingObj*)

6

TELL METHOD RotateTo(IN theta : REAL); .
ASK METHOD SetScaleSpeed(IN scaleSpeed : REAL);

(*inher. from ScalingObj*)
TELL METHOD ScaleTo(In xScale, yScale : REAL); .

ASK METHOD StartMotion;
(*inher. from DynamicObj*)

ASK METHOD StopMotion; .
ASK METHOD DynamicUpdate(IN currTime, elapsedTime : REAL); .

 ASK METHOD SetCurrNode(IN node : NodeObj);
 (* methods added by this object*)
 ASK METHOD SetPath(IN path : ARRAY INTEGER OF INTEGER);
 ASK METHOD FindPath(IN nr_wpocz, nr_wkon: INTEGER;
 IN net : NetworkObj): ARRAY INTEGER OF INTEGER;

TELL METHOD MoveVehicle(IN NodeS, NodeD : NodeObj);
•
• other methods inherited from superior objects
•

ASK METHOD ObjInit();
 END OBJECT;

VehicleObj object contains attributes of military object, as information indispensable
considering terrain traffic possibility by this object, etc.
Record Wsp contains information about coordinates. NodeObj and LinkObj objects contain
definitions of the network node and arc, respectively. NetworkObj object defines the network
containing, among other things, information about network nodes (coordinates and size of the
node) and links.
DynVehicleObj object describes a military object containing, additionally, possibility of
moving and imaging, and inherit both from VehicleObj and DynImageObj.
DynImageObj object ([9], [10]) is the standard object of SIMGRAPHICS II and describes
dynamic graphical object :

DynImageObj = OBJECT(ImageObj, MovingObj , RotatingObj , ScalingObj);
•
• fields and methods (see [13], pp. 192-194)
•

END OBJECT;

This object may be drawed, moved, scaled and rotated with respect to simulation time. In this
connection DynVehicleObj object have the same properties because inherited from
DynImageObj.
The most important properties of this object we present below.

Properties of DynVehicleObj object

• inherited from MovingObj :
 fields

* Course - actual course (direction) of object in radians in the world coordinate system;

7

* Speed - object speed in the world coordinate units per time unit;
* MovingTo - TRUE if object is actually moving;

 methods
* ASK METHOD SetCourse(...) - sets direction which the object will travel;
* ASK METHOD SetSpeed(...) - sets the speed of object;
* TELL METHOD MoveTo(...) - moves the object to a specified point. The method

stops when the object arrives at the destination.
* TELL METHOD FollowPath(...) - moves the object along a path defined by the

array of points. This method stops when the object arrives at the last point in
the array. To stop it from continuing use Interrupt.

• inherited from RotatingObj :
 fields

* RotationSpeed - actual speed of rotation in radians per seconds;
* RotatingTo - TRUE if object is actually rotating;

 methods
* ASK METHOD SetRotationSpeed(...) - sets the speed of rotation in radians per

second. Negative values cause clockwise rotation;
* TELL METHOD RotateTo(...) - rotates the object by angle in radians. Does not

stop the execution of the program but is carried out synchronically with other
simulation methods;

• inherited from ScalingObj :
 fields

* ScaleSpeed – actual speed of object scaling;
* ScalingTo - TRUE if object actually scaling;

 methods
* ASK METHOD SetScaleSpeed(...) – sets the amount that is added to an object

scaling factor every time unit. For example, with the scale of 1.0, object will
become twice as big after 1 time unit, 3 times as big after 2 time units, etc.;

* TELL METHOD ScaleTo(...) – synchronic scaling of the object to the point defined
as the method parameter with speed ScaleSpeed;

• inherited from DynamicObj (which inherited from MovingObj , RotatingObj ,
ScalingObj) :

 fields
* Motion - TRUE if object is currently moving;

 methods
* ASK METHOD StartMotion - starts an object movement. After the method is

invoked the DynamicUpdate method (described below) will be called
automatically from the runtime library;

* ASK METHOD StopMotion - stops an object from moving. DynamicUpdate
method will no longer be invoked from the runtime library;

* ASK METHOD DynamicUpdate(IN currTime, elapsedTime : REAL) -
called periodically by the timing routine to update animation. The current
simulation time is passed with the simulation time elapsed since the last
DynamicUpdate call.

Animation (moving) of DynImageObj object type can be done in two ways. First of
the ways is to set of object fields Course and Speed and invoke the StartMotion method of this
object. It causes object movement with fixed attributes. Second of the ways is to use TELL or
WAIT FOR instructions for the TELL method (e.g. MoveTo, ScaleTo, RotateTo), which

8

causes time elapsing and synchronous invoking TELL methods which are stopped after
reaching a destination point.

The fields and methods addded by DynVehicleObj are the following :
- field CurrNode;
- field Path ;
- ASK method SetCurrNode(...) ;
- ASK method FindPath(...) ;
- TELL method MoveVehicle(...).

CurrNode field contains information about the network node lastly achieved by the
object. Path field contains array of nodes numbers belonging to the path for the current object.
SetCurrNode(...) method is invoked when the object achieves the next node on its path.
FindPath(...) method that sets path for an object. Result is an array of node numbers belonging
to the path from the starting node to the ending one for the current object .
TELL method MoveVehicle(IN NodeS, NodeD : NodeObj) causes synchronous movement of
the object from NodeS to NodeD. This is the most important method from the point of view of
movement simulation. Possible code of it is presented in Example 1.

Example 1

TELL METHOD MoveVehicle (IN NodeS, NodeD : NodeObj);
 VAR

link : LinkObj;
NetWindow : NetworkObj;
i : INTEGER;

 xd,xs,yd,ys : REAL;
 exit : BOOLEAN;

 BEGIN

1 ASK SELF TO DisplayAt(ASK NodeS Translation.x, ASK NodeS Translation.y);
2 WHILE (i < > HIGH(Path)+1) AND (NOT exit)
3 INC(i);
4 IF i < HIGH(Path)
5 link := ASK NetWindow TO GiveLink(

 ASK NetWindow TO GiveNode(ASK SELF Path[i]),
 ASK NetWindow TO GiveNode(ASK SELF Path[i+1]));

6 IF link <> NILOBJ

 { object moving }

7 NodeD := ASK link Destination;
8 NodeS := ASK link Source;
9 xs:=ASK NodeS Translation.x;
10 ys:=ASK NodeS Translation.y;
11 xd:=ASK NodeD Translation.x;
12 yd:=ASK NodeD Translation.y;
13 ASK SELF TO SetRotationSpeed(RotationSpeed);
14 WAIT FOR SELF TO RotateTo(ATAN2(ys-yd,xs-xd)+pi);
15 ON INTERRUPT
16 IF SELF<>NILOBJ
17 DISPOSE(SELF);
19 END IF;
19 exit:=TRUE;
20 END WAIT;

9

21 ASK SELF TO SetSpeed(Speed);
22 WAIT FOR SELF TO MoveTo(xd, yd);
23 ON INTERRUPT
24 IF SELF<>NILOBJ
25 DISPOSE(SELF);
26 END IF;
27 exit:=TRUE;
28 END WAIT;
29 END IF;
30 END IF;
31 END WHILE;

32 END METHOD;
*

In line 14 the rotation with a fixed angle is done. In line 21 the object speed on the arc from
NodeS to NodeD is set. This speed may be known by solving of the problem described in
section 3. Invoking of the method to start a synchronous object movement to the specified
point (node) is presented in line 22. Independently of it objects may be moved by means of
StartMotion method (see description earlier presented).

The full invoking of object movement may look like this :

Example 2
.
.
.

 VAR
vehicle : DynVehicleObj;
NetWindow : NetworkObj;
path : ARRAY INTEGER OF INTEGER;

 BEGIN
NEW(vehicle);

.

.

.

path:=ASK vehicle TO FindPath(NrOfStartingNode,NrOfEndingNode,NetWindow);
ASK vehicle TO SetPath(path);
nodeS:= ASK NetWindow TO GiveNode(NrOfStartingNode) ;
nodeD:= ASK NetWindow TO GiveNode(NrOfEndingNode) ;
TELL vehicle TO MoveVehicle(nodeS, nodeD);
StartSimulation();

.

.

.

StopSimulation();
*

4. Method for movement simulation of grouped objects

A method of movement simulation for grouped objects is strictly related to the
movement of individual objects. As example of grouped object may be column (convoy) of
individual objects. In this case, movement of these objects may look like below:

Example 3
.
.
.

 VAR
VehicleColumn : ARRAY INTEGER, INTEGER OF VehicleObj;
ColumnsNumbers,

10

HowManyInColumn : INTEGER;
delayTime : REAL;

 BEGIN
NEW(VehicleColumn,1..ColumnsNumbers,1..HowManyInColumn);
FOR i:=1 TO ColumnsNumbers

 FOR j:=1 TO HowManyInColumn
 NEW(VehicleColumn[i,j]);
 path:=ASK vehicle TO FindPath(NrOfStartingNode+i,

 NrOfEndingNode+j,NetWindow);
 ASK VehicleColumn[i,j] TO SetPath(path);

 nodeS:= ASK NetWindow TO GiveNode(NrOfStartingNode+i) ;
 nodeD:= ASK NetWindow TO GiveNode(NrOfEndingNode+j) ;
 TELL VehicleColumn[i,j] TO MoveVehicle(nodeS,nodeD) IN delayTime;
 END FOR;

 END FOR;

 StartSimulation();
.
.
.

 StopSimulation();
*

Using the instruction „TELL VehicleColumn[i,j] TO MoveVehicle(nodeS,nodeD) IN
delayTime” causes that particular objects of column will follow previous object (that is second
behind the first, third behind the second, etc.) with a delay equal to delayTime. Value of this
delay may be changed and then we can use the StartMotion() and DynamicUpdate() methods
to dynamic changing of path for each object.

Summary

A movement of grouped objects may be carried out in the other way. We must find for
objects group the shortest K-path ([13]) or for each element of the group the shortest path
([1], [2], [3], [4], [5], [6], [7]) to the destination point (node) and next we invoke MoveTo() or
FollowPath() methods for each element of each objects group. These methods are interrupted
in the case of : decision changing by commands or destroying of the network elements
belonging to the path for some object. At that time we must determine the shortest paths from
the last achieved points by objects for particular elements of the group and repeat invoking of
the MoveTo() or FollowPath() methods, or StartMotion() and DynamicUpdate() ones.
Solution of the problem defined in the section 2 and idea of various object movement
simulation have been utilized in MODSIM application obtained after realization of the research
work described in [14] to animation and movement simulation of military vehicles. Obtained
solutions may be useful in transport scheduling, visualization and animation and the like
applications.

References

[1]. Cai X., Kloks T., Wong C.K. : Time-varying shortest path problems with constraints,
Networks 29 (1997), 141-149.

[2]. Denardo E.V., Fox B.L. : Shortest-route methods: 1. Reaching, pruning and buckets,
Operations Research 27 (1979), 215-248.

[3]. Dijkstra E. : A note on two problems in connection with graphs, Numerische Mathematik
1 (1959), 269-271.

11

[4]. Dreyfus S. E. : An appraisal of some shortest path algorithms, Operations Research 17
(1969), 395-412.

[5]. Golden B.L., Skiscim C.C.: Solving k-shortest and constrained shortest path problems
efficiently, Network Optimization and Applications 20 (1989), Texas A&M University,
College Station.

[6]. Hoffman W., Pavley R. : A method for the solution of the Nth best path problem, Assoc.
Comput. Mach. 6 (1959), 506-514.

[7]. Ibaraki T., Katon N., Mine H. : An O(Kn2) algorithm for K shortest simple paths in an
undirected graph with nonnegative arc length, Trans. Inst. Electron. and Comm. Eng.
Jap. 12 (1978), 1199-1206.

[8]. Kaszubowski Z., Mizera R., Piasecki S. : Problemy przegrupowania wojsk, Wojskowa
Akademia Techniczna, Warszawa 1970.

[9]. MODSIM II. The Language for Object-Oriented Programming. Reference Manual,
CACI Products Company, 1994.

[10]. Simgraphics II. User’s Manual for MODSIM II, CACI Products Company, 1995.
[11]. Tarapata Z. : Algorytmy komputerowego wspomagania planowania przemieszczania

UyZQROHJáHJR NROXPQ, Rozprawa doktorska, Wojskowa Akademia Techniczna, Warszawa
1998.

[12]. Tarapata Z. : Modelling of terrain for necessities of military objects movement
simulation, Bulletin of Military University of Technology 6/7 (1998), (in the press).

[13]. Tarapata Z. : Algorithm for simultaneous finding a few independent shortest paths,
Conference Proceedings of 9th European Simulation Symposium, pp.89-93, Passau 1997.

[14]. Tarapata Z. : 6\PXODFMD SU]HPLHV]F]DQLD �URGNyZ ZDONL ± SRMHG\QF]\FK� JUXSRZ\FK

L RGG]LDáyZ� Z RSUDFRZDQLX ZHZQ
WU]Q\P :$7] SUDF\ EDGDZF]HM GRILQDQVRZ\ZDQHM

SU]H] .%1] JUDQWX QU �6��� ��� �� SW� � Ä.RPSXWHURZD V\PXODFMD G]LDáD� ERMRZ\FK´�

Wojskowa Akademia Techniczna, Warszawa 1996.

.RPSXWHURZD V\PXODFMD SU]HPLHV]F]DQLD SRMHG\QF]\FK L JUXSRZ\FK �URGNyZ ZDONL

3U]HGVWDZLRQR PHWRG
 V\PXODFML SU]HPLHV]F]DQLD �URGNyZ ZDONL� =GHILQLRZDQR

problem równoczesnego dotarcia przemieszczanych obiektów do pewnych ustalonych
SXQNWyZ RUD]]DSURSRQRZDQR PHWRG
 MHJR UR]ZL�]DQLD� 3U]HGVWDZLRQR GHILQLFM
 RELHNWyZ Z

�URGRZLVNX]RULHQWRZDQ\P RELHNWRZR� NWyUH Z\NRU]\VW\ZDQH V� SU]H] SURJUDP V\PXODF\MQ\�

=DSURSRQRZDQR PHWRG\ V\PXODFML SU]HPLHV]F]DQLD SRMHG\QF]\FK L JUXSRZ\FK �URGNyZ ZDONL

X*\ZDM�F QRWDFML]RULHQWRZDQHJR�RELHNWRZR M
]\ND V\PXODF\MQHJR 02'6,0 ,,�

