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1. Introduction

1.1. Research Domain

1.1.1. A Short Description

Decision making is an inseparable element of human life. Many of human
decisions concern complex problems solving. These problems have properties,
which distinguish them from simple problems (Pohl et al., 2003): they can involve
many related issues or variables; some of the variables may be only partially
defined and some may yet to be discovered; complex problem situations are
pervaded with dynamic information changes; solution objectives may change; they
typically have more than one solution. The solution of complex problems can be
categorized as intensive information activity, which its success depends largely on
the availability of information resources and, in particular, the experience and
reasoning skills of the decision-makers. This clearly presents an opportunity for the
useful employment of computer-based Decision Support Systems (DSS) in which the
capabilities of the human decision-maker are complemented with knowledge
bases, expert agents, and self-activating conflict identification and monitoring
capabilities. Therefore, we can write the following definition of the DSS
(Holsapple & Whinston, 1996):

"The Decision Support System (DSS) is a computer-based information system
that supports business or organizational decision-making activities".

In general, in the decision making process the following stages are considered

(Najgebauer, 1999a): recognition of a decision situation, determination of possible
decision variants, decision choice, estimation of effects of decisions being realized,
modification or changing the decision.
Each of these stages can be supported by a computer. A computer support causes
that decision making may be easier, faster and more effective than without
a computer. Several models and methods from such domains as operations
research (e.g. simulation, optimization, games theory, etc.), pattern recognition,
transportation (e.g. paths planning), analysis of algorithms are used. Each of these
methods can be supported by a computer as well.

One of the most complicated and complex decision processes concerns
military applications. Much has been written in literature about the complexities of
planning and execution of these processes (Dockery & Woodcock, 1993; Ground et
al., 2002; Moffat, 2003; Najgebauer, 1999a; Pohl et al., 2003; Przemieniecki, 1994;
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Sawyer, 1995). Military command and control processes are information intensive
activities, involving many variables (tasks of friendly forces, expected actions of
opposite forces, environmental conditions - terrain, weather, time of the day and
season of the year, current state of own (friend) and opposite forces in the sense of
personnel, weapon systems and military materiel, etc.) with strong
interrelationships and uncertainty. Two of the factors which are especially essential
in military decision-making are human battlefield stress and a limited time.
Therefore, it is very important to give, for military decision-makers, computer
tools, which support their decisions and try to partially eliminate the negative
impact of their stress on the decision being made and shorten the decision-making
time. Moreover, the information sources are typically widely distributed and
subject to continuous change. In such a case, in order to improve situational
awareness, data fusion and integration is done (Antkiewicz et al., 2010b; 2010d;
Chmielewski, 2008a; Chmielewski & Kasprzyk, 2008b; Koszela & Chmielewski,
2008; Najgebauer et al., 2008d; Smart et al., 2005).

A typical military decision planning process is similar to a general decision making
process described earlier and it contains the following steps:

1. the assessment of both own and opposite forces, terrain as well as other factors
which may have an influence on a task realization,

the identification of a decision situation,

the determination of decision variants (Course of Actions, CoA),

the variants (CoA) evaluation (verification),

Ol PN

the recommendation of the best variant (CoA) chosen among these that meet the
proposed criteria.

One of the methods which can be used in the military decision planning process is

computer simulation (Najgebauer, 1999a). Simulators are used in the following

steps of this process: (4) the variant verification (via simulation) and (5) the variant

recommendation. Moreover, simulation can also be used for:

e optimization of command chains of military units,

e evaluation of the military operational rules and improving the command and
control procedures,

e research of the military equipment’s parameters, which modify results of
military actions,

e quality verification of battlefield process models (shooting, target searching,
movement, etc.).

In other words: simulation results can be used to make or change decisions. On the

other hand, simulation is one of the basic methods in military trainings

(Najgebauer, 1999a). This is the second main role of the simulation in the military

area.
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One of the most important decision problems in the military area (but not

only in this area) is movement planning. Object movement is an essential element
of combat actions and it is related to manoeuvre planning of military detachments
on the battlefield during battle as well as during preparation for battle. This
process is very important from the point of view of simulating a complex system. It
may have an effect on accuracy, adequacy, effectiveness and other characteristics
of these systems. Redeployment planning and simulation of military objects is
a basic problem, especially in combat simulators. Moreover, movement (paths,
routing, motion) planning is also an essential element in other applications: civilian
transportation, mobile robots, car navigation, virtual agents in computer games,
etc. These properties make this problem as interdisciplinary and multi-domains.
This problem should be solved using specialized algorithms to avoid its internal
complexity (Tarapata, 2003b). Therefore, movement planning and simulation
models and algorithms are one of the main problems considered in this book.
In the military domain, decision support and simulation systems can support
systems of class C4ISR (Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance) and their types' (Pohl et al., 2003; Ground et al.,
2002). In order to make better decisions, these systems should be
a knowledge-based (KB). Models and algorithms for these two fields: decision
support and simulation in KB environment are the most interesting from this
book's point of view.

1.1.2. Knowledge-Based Decision Support

As it has been written in the previous chapter, the Decision Support System
(DSS) should be a knowledge-based system. In this context knowledge can be
described as (Pohl et al., 2003):

"(...) experience derived from observation and interpretation of past events or
phenomena, and the application of methods to past situations. Knowledge bases
capture this experience in the form of rules, case studies, standard practices, and
typical descriptions of objects and object systems that can serve as prototypes.
Problem solvers typically manipulate these prototypes, in several different ways.
Therefore, we use our knowledge of past similar situations as a baseline for
defining the current problem system and developing a solution strategy (...)".

An example of a knowledge-based decision support system schema for
military applications (borrowed from Guru system (Guru, 2005)) is presented in
Fig.1.1. We can observe two elements, which contain a knowledge base (KB):
operational-tactical KB and terrain KB. The first one is used to collect knowledge
being used to express the character of the digital battlefield during automation of

1 C2=Command and Control; C3I=Command, Control, Communications and Intelligence, etc.
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military decision-making: military rules, decision situation patterns and
recognition rules, course of action (CoA) patterns, etc. The second one (terrain KB)
collects pre-processed information from the terrain database. For example, in
chapter 2.3 we presented a network model of the terrain (with rule-based functions
described on the network's nodes and arcs) in the Zlocien simulation system, which
is based on pre-processed information from the terrain database, and in chapters
5.2-5.3 we use the operational-tactical KB to identify decision situations and
automatization of the march process.

Other examples of knowledge-based decision support systems in the military
area can be found in (Ground et al., 2002; Pohl et al., 2003).

Orders |y | Baltlofiald stale:
i and -Ganflict siss state
Decision situation - -environmant stale
patterns and Reports

racaghitionrules ——— i

Codrse ol atlion
pattams (own-and
opponent)

____ Military ruies
L Recagnition of ,
Operational-tactical decisian: situation:
knowledge base _]—— Database
= containing current
_} Besisien ] operational-tactical

determinatian ] situation

[
Wilitary .
‘aguipment/ X
pattorns: | 'Dperational order ‘

- Terrain database
Military equipment and knowledge base
database

Fig. 1.1. An example of a knowledge-based decision support system schema for military
applications (Guru, 2005)

For paths planning as one of the main elements in terrain(knowledge)-based
decision support and simulation systems we can indicate many examples of
knowledge-based applications: for mobile robots (Guo et al., 2010; Heero, 2006;
Hodal & Dvorak, 2008; Hu et al., 2004; ; Nagarajan & Raja, 2010; Stentz, 1994; Weng
et al., 2009; Zafar et al.,, 2006) and for the military (Campbell et al., 1995;
Gilmore & Semeco, 1985; Lee & Fishwick, 1995; Lee, 1996; Logan & Sloman, 1997b;
Rajput & Karr, 1994).

1.1.3. Knowledge-Based Simulation

The knowledge-based simulation was conceived at the RAND Corporation in
the late 1970’s and early 1980’s applying artificial intelligence to simulation
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(Rothenberg et al., 1989). One of the applications has been considered deals with
knowledge-based validation of simulation results in the military domain (Kornell,
1987; Madni et al.,, 1987). Other applications (civilian) of knowledge-based
simulation have been described in (Cheung et al., 2007; Duran & Costaguta, 2009;
Oren, 2001; Robinson et al., 2005; Zeigler et al., 1991; 1996). Simulation is used,
because a knowledge-based simulation is understood as a compilation of simulation and
artificial intelligence techniques, hence it is agent-based (Oren, 2001). The agent
simulation allows simulation of natural or engineered entities with cognitive
abilities. Therefore, agent simulation is very appropriate for the simulation of
intelligent entities. Agent-based simulation is the use of agent technology to
generate the behaviour of models. There are many applications of agent-based
simulation in the military area. In the paper (Reece, 2003) the author has developed
a movement behaviour model for soldier agents who populate a virtual battlefield
environment. Paper (Cil & Mala, 2010) proposes a two-layer hybrid agent
architecture to match the needs of future multi-dimensional warfare. This
architecture has an integrated simulation tool to simulate planning results from the
cognitive layer via reactive agents. In the paper (Zafar et al., 2006) the authors show
the possibility of using hybrid architecture that implements mine detection,
obstacle avoidance and route planning with a group of autonomous agents with
coordination capabilities. Groups of inter cooperating multi agents working
towards a common goal have the potential to perform a task faster and with an
increased level of efficiency then the same number of agents acting in an
independent manner. The paper (Montana et al., 2000) discusses the
proof-of-concept of an automated system for scheduling all the transportation for
the United States military down to a low level of detail. Their approach is to use
a multi-agent society with each agent performing a particular role for a particular
organization. They show that the usage of a common multiagent infrastructure
allows easy communication between agents, both within the transportation society
and with external agents generating transportation requirements. In the paper
(Gelenbe et al., 2004) authors describe how a complex and simulation environment
can be used to fuse information about the behaviour of groups of objects of
interest. The fused information includes the objects' individual pursuits and aims,
the physical and geographic setting within which they act, and their collective
social behaviour. The group control algorithms combine reinforcement learning,
social potential fields and imitation. The paper (Sahin et al., 2008) deals with
bio-inspired computation techniques, such as genetic algorithms, for real-time
self-deployment of mobile agents to carry out tasks similar to military applications.
In the paper (Wang, 2006) authors build stochastic mathematical models, in
particular G-network models of behaviour. They have demonstrated their
approach in the context of urban military planning and analyzed the obtained



10 1. Introduction

results. The results are validated against those obtained from a simulator. The

results suggest that the proposed approach has tackled one of the classical

problems in modelling multi-agent systems and is able to predict the systems’
performance at low computational cost.

For many years in military applications a simulated battlefield is used for
training military personnel. There are at least three ways to provide the simulated
opponent:
® two groups of trainees in simulators may oppose each other (often used);
¢ human instructors who are trained to behave in a way that mimics the desired

enemy doctrine (seldom used);

e computer system that generates and controls multiple simulation entities using
software and possibly a human operator.

The last approach is known as a Semi-Automated Force (SAF or SAFOR) or
a Computer Generated Force (CGF). The CGF is used in military Distributed Interactive
Simulation (DIS) systems to control large numbers of autonomous battlefield
entities using computer equipment and software rather than humans in simulators.

The advantages of the CGF are well-known (Petty, 1995):

e they lower the cost of a DIS system by reducing the number of standard
simulators that must be purchased and maintained;

e CGF can be programmed, in theory, to behave according to the tactical doctrine
of any desired opposing force, and so eliminate the need to train and retrain
human operators to behave like the current enemy;

e CGF can be easier to control by a single person than an opposing force made up
of many human operators and it may give the training instructor greater
control over the training experience.
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Prototype s s AN _
2 : 7

Operational C3}_ Systen

Semsdntics
Voeahulary and Grimmar

) llod Real
conirolte Terrain Merteo  Mun-madé Environment/
Virtpal e T e
Aight geo fealures Sysie
Svstems s - A stems
- Synthetic Environment

Fig. 1.2. A potential simulation system architecture for military applications (Dompke, 2001)



Z. Tarapata — Models and Algorithms for Knowledge-Based Decision Support and Simulation... 11

A potential simulation system architecture (5SA) and the location of the CGF
system inside the SSA is presented in Fig. 1.2. Note that CGF can and should
cooperate with C3I systems.
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Fig. 1.3. Modules of the CGF rational/cognitive model (Dompke, 2001)

The role of each of the modules in CGFs (see Fig. 1.3) can be described as follows
(Dompke, 2001):
(1) the Data Collection module is responsible for gathering the detailed data
elements as instructed by the situation assessment module. Basic functions of this
module are as follows:

(1.1) get data request,

(1.2) find data,

(1.3) prepare data,

(1.4)

(2) the Situation Assessment module defines the detailed data requirements that

provide data reference;

need to be collected, interprets the mission received by the CGF, updates the
current assessment of the situation and defines and monitors critical and
meaningful events. Basic functions of this module are as follows:

(2.1) produce data requests,

(2.2) interpret and fuse data,

(2.3) monitor critical events,

(2.4) maintain an updated situation;
(3) the Option Generation module develops courses of action (CoA) based on the
triggering event, mission statement and current situation assessment. Basic
functions of this module are as follows:

(3.1) generate possible courses of action;
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(4) the Decision-Making module evaluates the various courses of action and ranks
them according to a set of pre-determined and derived criteria. It will also support
the negotiation process between CGFs or human decision makers that may be
required to develop a solution for the larger context in which the CGFs decision are
included. Basic functions of this module are as follows:

(4.1) rank options,
(4.2) goals decision making approach,
(4.3) negotiate;

(6) the Communication module supports the exchange of data between the CGF
and all other elements of the simulation system. It transforms data into the
appropriate format for local and external interpretation. Basic functions of this
module are as follows:

(5.1) interface,
(5.2) report.

Selected technologies (important from our point of view) which are used by
functions of CGFs are as follows (function number — technology (criticality: (L)ow,
(M)edium, (H)igh)): (1.2) — knowledge discovery (L), knowledge based system (L),
pattern recognition (L); (2.1) — knowledge discovery (H); (2.2) — pattern recognition
(H); (3.1) — search algorithms (H), knowledge based system (H), models and
methods of operations research (L); (4.1) — models and methods of operations
research (H); (4.2) — planning algorithms (H), search algorithms (H).

From the description presented above results, that the CGF systems are strongly
knowledge-based and they use models and methods of operations research.

As an inseparable part of the CGF, modules for route planning based on the
real-terrain models are used (Ceranowicz, 1994; Dompke, 2001; Henninger et al.,
2000; OneSAF, 2008; Tuft et al., 2006). For example in ModSAF (Modular
Semi-Automated Forces), in module "SAFsim", which simulates the entities, units,
and environmental processes the route planning component is located
(Longtin & Megherbi, 1995).

Moreover, automated route planning will be a key element of almost any
automated terrain analysis system that is a component of military C4ISR systems.

1.2. Research Objectives and Theses

The main goal of this book is to present new and analyse existing models and
algorithms for decision support and simulation, especially in defence and transport
applications, in a knowledge-based environment. The works have mainly focused
on computational complexity and accuracy of presented algorithms as well as their
usefulness in existing and new computer-based decision support and simulation
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systems. Many of the presented models and algorithms are interdisciplinary but in
the majority of cases we focus on defence and transport applications.

It should be emphasized that the goal of this book are not problems
concerning knowledge representation, knowledge acquisition, knowledge
discovery, building expert systems, etc., but providing the models and algorithms
to support the decisions and simulate their effects in DSSs and simulation systems,
which are knowledge-based and the described algorithms can use this knowledge.

The main research theses presented in the book are as follows:

T1. knowledge-based decision support and simulation are effective methods to
support decisions and simulate their effects in a dynamically changing
environment and can be used in defence and transport applications;
knowledge may concern an environment as well as decision processes being
analysed;

T2. automatization of decision processes allow us to research these processes (e.g.
using simulation) as well as decrease the cost and the time of complex process
analysis;

T3. the use of specialized algorithms (which are new or adapted from existing
algorithms) for solving decision problems can decrease computational
complexity and/or increase accuracy of traditional algorithms; these
algorithms can and should be a part of the knowledge-based DSSs and/or
simulation systems.

These theses are verified in chapters of this book, which are organized as
presented below.

1.3. Contents of the Book

Presented in chapter 2 is the review of methods of environment modelling for
knowledge-based decision making and simulation. A few methods of digital map
representation are described: the visibility diagram, Voronoi diagram, straight-line
dual of the Voronoi diagram, edge-dual graph, line-thinned skeleton, regular grid
of squares, grid of homogeneous squares coded in a quadtree system (as
a representation of multiresolution terrain). An example is described of the terrain
knowledge-based model being used in the real simulation Zlocien system.
Moreover, four main approaches concerning terrain representation that are used in
a battlefield simulation for paths planning have been described: free space
analysis, vertex graph analysis, potential fields and grid-based algorithms.

Movement (paths, routing, motion) planning is an essential element in many
applications: transportation, mobile robots, car navigation, virtual agents in
computer games, military route planning, etc. Therefore, chapter 3 contains
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a detailed discussion on three main models and algorithms for terrain-based paths
planning: (1) decomposition and multiresolution approach to path planning, (2)
multiobjective (multicriteria) paths planning and (3) disjoint paths planning.
In the first case, a decomposition method (DSP - decomposition shortest paths) is
presented and its properties, which decrease computational time of path searching
in multiresolution and large graphs. The goal of the method is not only
computation time reduction but, most of all, using it for multiresolution path
planning. A theoretical and experimental analysis of the method is discussed,
especially from the computational complexity and accuracy point of view. The
parallelization method of the DSP algorithm is also analysed. An example of using
this method in a multiresolution battlefield simulation is described.
In the second case, selected multicriteria (multiobjective) approaches for the
shortest path problems are presented. Classification of the multiobjective shortest
path problems (MOSP) is given. Different models of MOSP problems are discussed
in details. Methods of solving formulated optimization problems are presented.
Analysis of complexity of presented methods and ways of adaptation of classical
algorithms for solving multiobjective shortest path problems are described. The
GAMS model for one of the MOSP problems is defined. Comparison of
effectiveness of solving selected MOSP problems defined as: mathematical
programming problems (using CPLEX 7.0 solver) and multi-weighted graph
problems (using modified Dijkstra’s algorithm) is given. Experimental results of
using the presented methods for multicriteria path selection in a terrain-based grid
network are given.
In the third case, specific disjoint paths planning models and algorithms are
considered. We classify disjoint-paths planning problems and formulate
two types of problems of node-disjoint paths visiting specified nodes: NDRP-Sum
and NDRP-Max. The first one (NDRP-Sum) minimizes the total cost of all (K>1)
disjoint paths visiting specified nodes in the restricted area and the second one
(NDRP-Max) minimizes the maximal cost of any of the K disjoint paths.
Exemplified GAMS models for both problems are defined. For solving the
NDRP-Sum and NDRP-Max problems we propose the subgraphs generating-based
algorithm (SGDP). Some experimental results with a discussion of the complexity
and accuracy of the algorithm are shown in detail. Moreover, we show how to use
modifications of the Busacker-Gowen and Edmonds-Karp minimal-cost flow
algorithms to solve problems of the node-disjoint paths case.
Presented applications and examples of methods being described concern military
applications, but these methods are interdisciplinary.

Chapter 4 deals with models and algorithms for the nonlinear optimization
problem of multi-objects movement scheduling to synchronize their movement
(MS problem) as well as properties of the presented algorithms. For synchronous
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movement, two categories of criteria are defined: the time of movement and
"distance" of K>1 moved objects from the movement pattern. Similarities and
differences between defined problems and the classical tasks scheduling problem
in parallel processors are shown. Two algorithms for synchronous movement
scheduling are proposed and their properties are considered. One of the
algorithms is based on the dynamic programming approach and the second one
uses approximation techniques. Moreover, we formulated the multicriteria
movement synchronization scheduling problem (2CMSS problem). The model
consists of two parts: (1) node-disjoint path planning visiting specified nodes for K
objects with a given vector of intermediate nodes for each one (NDSP problem); (2)
movement synchronization in intermediate nodes (MS problem). We defined the
problem as a discrete-continuous, nonlinear, two-criterion mathematical
programming problem. We proposed to use a two-stage algorithm to solve the
2CMSS problem (as a lexicographic solution): at first we have to find the vector of
node-disjoint shortest paths for K objects visiting intermediate nodes to set optimal
paths under the assumption that we use maximal possible velocities on each arc
belonging to a path for each object (the solution of the NDSP problem using
algorithms described in chapter 3), and next we try to decrease values of velocities
to optimize the second criterion (synchronization, solution of the MS problem
using algorithms described in this chapter). Theoretical and experimental analysis
of the complexity and accuracy of the algorithms as well as their practical
usefulness are discussed.

In chapter 5 the idea and model of command and control processes applied to
the decision automata for attack, defence and marching on the battalion level as
well as methods for movement simulation of individual and group objects are
considered. The decision automata being presented replace battalion commanders
in some simulator for military trainings and it executes two main processes:
decision planning process and direct combat (or march) control. One of the
elements of the decision planning process is an identification of the decision
situation. Therefore, the model of the decision situation and two algorithms for
decision situation identification are presented. The first one is based on a distance
vector approach and the second one — on a multicriteria weighted graph similarity
approach (MIWWGSP problem). Some numerical examples have been described. In
the decision automata to march, the march planning process (containing: march
organization determination and detailed march schedule determination) and the
direct march control (containing: march simulation, identifying fault situations
during a march simulation and automata reactions, velocity calculations and fuel
consumption calculation) as well as techniques regarding automata
implementation have been presented. Moreover, methods for movement
simulation of individual and group objects based on the MODSIM simulation
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language have been discussed. These discussions are supplemented by the
presentation of the method for cooperating objects movement simulation and
management in real simulation system like CGFs.

Chapter 6 contains selected applications of described models and methods in
real systems. We showed applications of methods described in chapters 3, 4 and 5
for movement planning and simulation in Simulation-Based Operational Training
Support System - Zlocien and Modelling & Simulation of Combat - MSCombat. Next, we
presented using these methods in knowledge-based pattern recognition tools to
support military mission planning and simulation (in systems Guru and CAVaRS).
Additionally, applications of the presented models and methods in security
(especially in early warning systems) and crisis management systems are
discussed.

Finally, remarks and conclusions concerning the described models,
algorithms and related problems are presented.

1.4. Authorship and Bibliography Remarks

The author of this book is the author of the majority of presented models and
algorithms. Authorship concerns: all models and algorithms presented in chapters
2.3,3,4,5and 6.1 (excluding: (1) computer implementation of the SGDP and DSP
algorithms in chapter 3 - these implementations have been done by two
supervised students; (2) the model of the decision situation in chapter 5.2.1 and (3)
the method described in chapter 5.2.2). In the remaining cases the author of this
book is the co-author. The majority of these models and algorithms are used in real
systems: Zlocien, Guru, MSCombat, CAVaRS. These applications are described in
separate chapters, especially in chapter 6.

Detailed state of the art and bibliography concerning problems presented in
the book are discussed in suitable chapters. However, the fundamental sources of
information for the newest research results were the following scientific journals
and conference proceedings: Computers & Operation Research, Networks, Journal of
the ACM, Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence,
Conference on Computer Generated Forces and Behavioural Representation, IEEE
Computational Intelligence for Security and Defence Applications Conference, Military
Communication and Information Systems Conference and technical reports from
selected research projects in which the author of this book has participated as
a member or as the project manager: (Antkiewicz et al., 2000; 2009d; Guru, 2005;
Tarapata, 1999c; 2008f; 2010h; Zlocien, 2002).

In this book we consequently use separate notations in each chapter. However, in
some cases we use the same notations as were previously used — in such a case we
refer to these ones.



2. Environmental Modelling for Knowledge-Based
Decision Making and Simulation

2.1. An Overview

The terrain database-based model is being used as an integrated part of the
military DSS and CGF systems as well as in civilian applications. Terrain data can
be as simple as an array of elevations (which provides only a limited means to
estimate mobility) or as complex as an elevation array combined with digital map
overlays of slope, soil, vegetation, drainage, obstacles, transportation (roads, etc.)
and the quantity of recent weather (Joe & Feldman, 1998). For example authors
(Benton et al., 1995) describe HERMES (Heterogeneous Reasoning and Mediator
Environment System), which allows the answering of queries that require the
interrogation of multiple databases in order to determine the start and destination
parameters for the route planner.

One of the most popular representations of the terrain is a graph
representation. There are a few approaches, in which the map (representing
a terrain area) is decomposed into a graph. All of them first convert the map into
regions of go (open) and no-go (closed). The no-go areas may include obstacles and
are represented as polygons. A few methods of map representation is used, for
example: visibility diagram, Voronoi diagram, straight-line dual of the Voronoi
diagram, edge-dual graph, line-thinned skeleton, regular grid of squares, grid
of homogeneous squares coded in a quadtree system, etc. (Benton et al., 1995;
Schiavone et al., 1995; Schiavone et al., 2000; Tarapata, 2003a).

The polygonal representations of the terrain are often created in Database
Generated Systems (DBGS) through a combination of automated and manual
processes (Schiavone et al., 1995; Schiavone et al., 2000). It is important to say that
these processes are computationally complicated, but are conducted before
simulation (during the preparation process). Typically, an initial polygonal
representation is created from the digital terrain elevation data through the use of
an automated triangulation algorithm, resulting in what is commonly referred to
as a Triangulated Irregular Network (TIN). A commonly used triangulation algorithm
is the Delaunay triangulation. The definition of the Delaunay triangulation may be
done via its direct relation to the Voronoi diagram of set S with an N number of 2D
points: the straight-line dual of the Voronoi diagram is a triangulation of S.
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The Voronoi diagram is the solution to the following problem: given set S with
an N number of points in the plane, for each point p; in S what is the locus of points
(x,y) in the plane that are closer to p; than to any other point of S?

The straight-line dual is defined as the graph embedded in the plane obtained
by adding a straight-line segment between each pair of points of S whose Voronoi
polygons share an edge. Fig. 2.1a depicts an irregularly spaced set of points S, its
Voronoi diagram, and its straight-line dual (i.e. its Delaunay triangulation).

The edge-dual graph is essentially an adjacency list representing the spatial
structure of the map. To create this graph, we assign a node to the midpoint
of each map edge, which does not bound an obstacle (or the border). Special nodes
are assigned to the start and goal points. In each non-obstacle region, we add arcs
to connect all nodes at the midpoints of the edges, which bound the same region.
The fact that all regions are convex, guarantees that all such arcs cannot intersect
obstacles or other regions. An example of the edge-dual graph is presented
in Fig. 2.1b.

The visibility graph, is a graph, which nodes are the vertices of terrain
polygons and edges join pairs of nodes, for which the corresponding segment lies
inside a polygon. An example is shown in Fig. 2.2. This idea is used to find optimal
flight path in a segmented airspace (Kulas et al., 2008).

The: straight-line dual of the Voronoi _ - —
d.ingmm (momm u-imgulalionj Inpul Map == Edge Dual-Graph> —=

(a) (b)

Fig. 2.1. (a) Voronoi diagram and its Delaunay triangulation (Schiavone et al., 1995);

(b) Edge-dual graph. Obstacles are represented by filled polygons
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Fig. 2.2. Visibility graph (Mitchell, 1999). The shortest geometric path from the source node
s to the destination t is marked by dashed bold line. Obstacles are represented by filled polygons

The regular grid (mesh) of squares (or hexagons, e.g. in JTLS system (JTLS,
1988)) divides terrain space into the squares with the same size and each square is
treated as having homogeneity from the point of view of terrain characteristics (see
Fig. 2.3).

The grid of homogeneous squares coded in quadtree system divides terrain space
into the squares with a heterogeneous size (Fig. 2.4). The size of the square results
from its homogeneity according to terrain characteristics. An example of this
approach was presented in (Tarapata, 2000d). This approach represents
multiresolution terrain modelling which is also used for battlefield terrain
modelling (Behnke, 2004; Cassandras et al., 2000; Chou et al., 1998; Davis et al., 2000;
Magillo & Bertocci, 1998; Pai & Reissell, 1994; Tarapata, 2003a). This is a nature of
hierarchical structure of military units and methods of their behaviours on
a simulated battlefield. For a company level of units greater precision of terrain
(environment) model is required than e.g. for the brigade level. Very good
definition of multiresolution terrain is presented in (Magillo & Bertocii, 1998):

"(...) The concept of multiresolution refers to the possibility of using different
representations of a spatial entity, having different levels of accuracy and
complexity. Multiresolution models allow trading off accuracy of representation
and amount of data to be manipulated. Multiresolution representations of terrains
are of great interest when large quantities of data are available and/or large areas
are modeled (...)".

In many existing simulation systems there are different solutions regarding
terrain representation. In the JTLS system (JTLS, 1988) terrain is represented using
hexagons with a size ranging from 1km to 16km. In the CBS system (CBS, 2001)
terrain is similarly represented, but an additional vectoral-region approach is
applied. In the Simulation-Based Operational Training Support System (SBOTTS)
Zlocien (Najgebauer, 2004a; 2004b) and the System of Automatic Tools for Decision
Support (SATDS) — Guru (Guru, 2005) a dual model of the terrain: (1) as a regular
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network of terrain squares with square size 200mx200m, (2) as a road-railroad
network, which is based on a digital map, is used (Tarapata, 2004b; 2004c). This
model is presented in details in chapter 2.3.

P

Fig. 2.3. Examples of terrain representation in a simulated battlefield: (a) regular grid of terrain
hexagons; (b) regular grid (mesh) of terrain squares and its graph representation with 8 neighbours
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Fig. 2.4. (a) Partitioning of the selected real terrain area into squares of topographlcal homogeneous
areas; (b) Determination of possible links between neighbouring squares and a description of
selected vertices in the quadtree system for terrain area presented in (a)
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Advantages and disadvantages of terrain representations and their usage for
terrain-based movement planning are presented in chapter 2.2.

2.2. Terrain-Based Approaches for Paths Planning

There are four main approaches concerning terrain representation that are
used in a battlefield decision support and simulation for paths planning (Karr et al.,
1995): free space analysis, vertex graph analysis, potential fields and grid-based
algorithms.



Z. Tarapata — Models and Algorithms for Knowledge-Based Decision Support and Simulation... 21

In the free space approach, only the space not blocked and occupied by
obstacles is represented. For example, representing the centre of movement
corridors with Voronoi diagrams (Schiavone et al., 1995) is a free space approach
(see Fig.2.1). The advantage of Voronoi diagrams is that they have efficient
representation. Disadvantages of Voronoi diagrams are as follows: they tend to
generate unrealistic paths (paths derived from Voronoi diagrams follow the centre
of corridors while paths derived from visibility graphs clip the edges of obstacles);
the width and trafficability of corridors are typically ignored; distance is generally
the only factor considered in choosing the optimal path.

In the vertex graph approach, only the endpoints (vertices) of possible path
segments are represented (Mitchell, 1999). Advantages of this approach: it is
suitable for spaces that have sufficient obstacles to determine the endpoints.
Disadvantages are as follows: determining the vertices in "open" terrain is difficult;
trafficability over the path segment is not represented; factors other than distance
can not be included in evaluating possible routes.

In the potential field approach, the goal (destination) is represented as an
"attractor", obstacles are represented by 'repellers", and the vehicles are pulled
toward the goal while being repelled from the obstacles. Disadvantages of this
approach: the vehicles can be attracted into box canyons from which they can not
escape; some elements of the terrain may simultaneously attract and repel.

In the regular grid approach, the grid overlays the terrain, terrain features are
abstracted into the grid, and the grid rather than the terrain is analyzed.
Advantages are as follows: analysis simplification. Disadvantages: "jagged" paths
are produced because movement out of a grid cell is restricted to four (or eight)
directions corresponding to the four (or eight) neighbouring cells; granularity (size
of the grid cells) determines the accuracy of terrain representation.

In many of the existing simulation systems there are different solutions
regarding this subject (Benton et al., 1995; Campbell et al., 1995, Kreitzberg et al.,
1990; Longtin & Megherbi, 1995; Tarapata, 2003a). In the work of (Benton et al.,
1995) authors describe a combined on-road/off-road planning system that was
closely integrated with a geographic information system and a simulation system.
Routes can be planned for either single columns or multiple columns. For multiple
columns, the planner keeps track of the temporal location of each column and
insures they will not occupy the same space at the same time. In the same paper
the Hierarchic Route Planner as the integrate part of the Predictive Intelligence Military
Tactical Analysis System (PIMTAS) is discussed. In the paper (James et al., 1999)
authors presented an on-going effort to develop a prototype for ground operations
planning, the Route Planning Uncertainty Manager (RPLUM) tool kit. They apply
uncertainty management to terrain analysis and route planning since this activity
supports the commander’s scheme of manoeuvre from the highest command level
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down to the level of each combat vehicle in every subordinate command. They
extend the PIMTAS (Benton et al., 1995) route planning software to accommodate
results of reasoning about multiple categories of uncertainty. Authors of the paper
(Campbell et al., 1995) presented route planning in the Close Combat Tactical Trainer
(CCTT). Kreitzberg (Kreitzberg et al., 1990) has developed the Tactical Movement
Analyzer (TMA). The system uses a combination of digitized maps, satellite images,
vehicle type and weather data to compute the traversal time across a grid cell.
TMA can compute optimum paths that combine both on-road and off-road
mobility, and with weather conditions used to modify the grid cost factors. The
smallest grid size used is approximately 0.5 km. The author uses the concept of
a signal propagating from the starting point and uses the traversal time at each cell
in the array to determine the time at which the signal arrives at neighbouring cells.
A lot of these systems use the Continuous Dijkstra’s Algorithm for route planning
described by Mitchell in (Mitchell, 1999). In the simulation-based operational
training support system SBOTSS Zlocien (Najgebauer, 2004a) a dual model of the
terrain: (1) as regular network of terrain squares with a square size of 200mx200m,
(2) as road-railroad network, which is based on a digital map in VPF format, is
used. To find paths for units, modified shortest path algorithms (SPA) such as
Dijkstra’s, A*, geometric SPA are used. Geometric SPA supplements two
algorithms presented above (the hybrid shortest path algorithm is obtained) and it
is used in case the size of the network is large (default is 10000 nodes, but it is
a parameter set in a so-called calibrator of the simulation system (Antkiewicz et al.,
2006)). Modifications of mentioned algorithms deal with the following details:
(a) paths determination in different configurations - (al) from point (region) to
point (region), (a2) visiting selected points (regions), (a3) omitting selected points
(regions, obstacles), (a4) inside or outside a selected region, (a5) off-roads only, (a6)
on-roads only, (a7) combined on- and off-roads and others; (b) if we do not set the
region inside where we want to find the path then the algorithm itself, iteratively
determines the rectangular region, which is based on a line linking the beginning
and end points (nodes) of movement, to minimize computational time; (c) if we
want to find an on-road path only, and there are no nodes of the road network
inside the intermediate squares, then the algorithm may optionally find crossroads
(nodes of the road network), which are nearest to squares inside that the path must
cross. Detailed description of the movement planning algorithms used in SBOTSS
Zlocien is presented in (Tarapata, 2004b; 2004c). Moreover, it is also presented in
chapter 6.1. A special type of system for movement planning is Allied Deployment
and Movement System (ADAMS) (Heal & Garnett, 2001), which has been
developed in support of multinational force movement planning. This system
is in wide use throughout NATO and nations for analysis, generation and
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coordination of movement plans. The ADAMS provides the users with the
tools to plan and manage deployment operations.

Taking into account multiresolution terrain modelling this approach is also
used for battlefield modelling and simulation. For example, in the papers
(Tarapata, 2004b; 2010a; 2010c) a decomposition method, and its properties, which
decreases computational time for path searching in multiresolution graphs has
been presented. The goal of the method is not only computation time reduction
but, first of all, using it for multiresolution path planning (to apply similarity in
decision processes on a different command level and decomposing-merging
approach). The method differs from very effective representations of terrain using
quadtree (Kambhampati & Davis, 1986) because of two main reasons: (1) elements
of quadtree, which represent a terrain have irregular sizes, (2) in a majority of
applications quadtree represents only binary terrain with two types of region: open
(passable) and closed (impassable). Hence, this approach is very effective for
mobile robots, but it is not adequate, for example, to represent the battlefield
environment (Tarapata, 2003a).

Some models and algorithms for terrain-based movement planning are
considered in detail in chapter 3.

2.3. Terrain Model in the Zlocien System as an Example of Battlefield
Environment Model

The terrain (environment) model So, which we use as a battlefield model in
the Zlocien system (Najgebauer, 2004a, 2004b) is based on the digital map in VPF
format. The model is twofold: (1) as a regular network Z; of terrain squares, (2) as
a road-railroad network Z; and it is defined as follows (Tarapata, 2004c; 2004d):

So(t) =<Z1(t)/Z2(t)> (2.1)

The regular grid of squares Z; (see Fig.2.3b) divides terrain space into
squares with the same size (200mx200m) and each square is homogeneous from
the point of view of terrain characteristics (degree of slowing down velocity, ability
to camouflage, degree of visibility, etc.). This square size results from the fact that
the lowest level of modelled units in SBOTSS Zlocien is a platoon and 200m it is
approximately the width of the platoon front during attack. The Z; model is used
to plan off-road (cross-country) movement e.g. during attack planning. In the Z;
road-railroad network (see Fig. 2.5) we have crossroads as network nodes and
section of the roads linking adjacent crossroads as network links (arcs, edges). This
model is used to plan fast on-road movement, e.g. during march (redeployment)
planning and simulation. Movement planning and simulation methods in Zlocien
system using Z1 and Z> models are described in chapter 6.1.
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Models Z; and Z; are integrated. This integration gives possibilities to plan
movement taking into account both models. It is possible, because each square of
terrain contains information about fragments of road inside this square. On the
other hand each fragment of road contains information on squares of terrain,
which they cross. Hence, the route for any object (unit) may consist of sections of
roads and squares of terrain. It is possible to get off the road (if it is impassable)
and start off-road movement (e.g. omit impassable section of road) and afterwards
returning to the road. Conversely, we can move off-roads (e.g. during attack),
access a section of road (e.g. any bridge to go across the river) and then return back
off-road (on the other riverside). The characteristics of both terrain models depend
on: time, terrain surface and vegetation, weather, the time of day and season of the
year, opponent and own destructions (e.g. destruction of the bridge, which is
element of road-railroad network) (see Table 2.1 and Table 2.2).

The formal definition of the regular network of terrain squares Z; is as
follows (see Fig. 2.3b):

Z,(t)= <G111P1(t)> (2.2)

where G; defines Berge's graph' describing the squares network structure,
G, = <W1,F1> , W, - set of graph’s nodes (terrain squares); I} : W, — 2" - function
describing for each nodes of the G set of adjacent (direct successors) nodes
(maximal 8 adjacent nodes); W, (f) ={¥, (- 1), ¥ (1), V1 ,(/ 1), ¥y, (1)} - set of
functions defined on the graph’s nodes (depending on ¢).

One of the functions of ¥ (¢) is the function of slowing down velocity
FSDV(n,...), ne W,, which describes slowing down velocity (as a real number

from [0,1]) inside the n-th square of the terrain,
ESDV : W, xT x Veh x Meteo x YearS x DayS — [0,1] (2.3)

where: T - set of times, Veh - set of vehicle types, Veh ={Veh_Wheeled,
Veh_Wheeled-Caterpillar, Veh_Caterpillar}; Meteo - set of meteorological
conditions, YearS - set of the seasons of year, Day$S - set of the times of day.

The function FSDV is used to calculate crossing time between two squares of
terrain. Other functions (as subset of W, (7)) described on the nodes (squares) of G1

and essential from the point of view of trafficability and movement are presented
in Table 2.1.

! Berge's graph is such a directed graph which has at most one arc between each ordered
pairs of nodes. One of the formal definitions is presented in (Korzan, 1978).
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Table 2.1. The most important functions described on the terrain square (node of G1)

Description of the function Definition of the function
Geographical coordinates of node (centre of square) FWSP:W, —» R’
Ability to camouflage in the square FCam:W,xT —10,1]
Degree of terrain undulation in the square FUnd :W, —[0,1]
Subset of the node’s set of Z; network, which are located inside | FW,0nW, :W, — 2"
the square

The formal definition of the road-railroad network Z; is following (see Fig.
2.5):

Z,(t)=(G,, W, (1), &,(t)) (2.4)
where G; describes Berge's graph defining structure of road-railroad network,
G, =<V\/2,LI2>, W, - set of graph’s nodes (crossroads); U, c W, xW, - set of graph
G arcs (sections of roads); W,(t) ={¥, (. t),'¥, (- t‘),...,‘P2 m, (+£)} - set of functions
defined on the graph’s Gz nodes (depending on f); {{21 ot } e set of
functions defined on the graph’s G; arcs (depending on t).

Functions (as subset of W,(t) and {,(¢)) are presented, which are essential

from the point of view of trafficability and movement, described on the nodes and
arcs of Gz in Table 2.2. One of the most important functions is slowing down
velocity function FSDV2(u,...), ueU, which describes slowing down velocity (as

real number from [0,1]) on the u-th arc (section of road) of the graph:

FSDV2:U,xT xVehx Meteox YearS x DayS — [0,1] (2.5)

0
(b)
Fig. 2.5. Road-railroad network Z, (a) and its graph model G (b)
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Table 2.2. The most important functions described on the crossroads and on part of the roads (Gz)

Description of the function Definition of the function
Geographical coordinates of node (crossroad) FWSP2:W, — R’
Node from Z;, which contains node from Z; FW,0nW, : W, - W,
Subset of set of the nodes of Z; network, which contains the arc FU,0nW,:U, — o
Degree of terrain undulation on the arc FUnd :U, —10,1]
Arc length FLen:U, - R*

For movement planning models in Zlocien system, described in chapter 6.1
and in (Tarapata, 2004b; 2004c), we construct some temporary network Sz

57 =(G*, ¥, (U ¥, (1), &(H) Uil 1y, 1)) (2.6)
where: G* - Berge's graph describing structure of the temporary network (Fig. 2.6),
G*=(W*,U) 2.7)

We= WiUW, - set of graph’s G? nodes, V1 defined in (2.2), W2 defined in (2.4);
U cW*xW*=U,ul,ul, -setof graph’s G arcs, U described in (2.4) and

U, ={(a,b)e W, xW, :be T(a)} (2.8)
u, =U, ul, 2.9)
U, ={(a,b)e W, xW, : FW,0nW,(b)e T,(a)} (2.10)
U, ={(a,b)e W, xW, :be T, (FW,0nW,(a))} (2.11)

l1 - function which describes crossing time by an arc:
l,:U*— R"u{0} (2.12)

I - function describing geometrical length of an arc:
L,:U*—>R" (2.13)

I3 - function describing ability to camouflage on an arc:
l,:U* —[0,1] (2.14)

Let’s note that we determine values of I3, [> and I3 in the moment Ty, in which
we plan the movement for each arc (a,b)e U= Therefore, they depend on time but
we omit it to simplify descriptions. Moreover, we accept following notations:
met(To)e Meteo - meteorological conditions on the arc (a,b) in the moment Tp;
pr(To)e YearS - the season of the year inside the region in the moment Tj;
pd(To)e Day$S - the time of the day inside the region in the moment Ty;
veh(p)e Veh - type of the vehicle p.
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Fig. 2.6. Structure G? of temporary network 52

We define [; function as follows:

d(a,b) st
L ((@,8)) = ™ (id (a,5)) when v (id,(a,b)) #0 2.15)

o, otherwise

where: d(a,b) - geometric distance between nodes g, b,

3

d(a,b)= i’/ (x(a)=x(0)” +(y(a) = (b)) +(z(a) ~=(t)) (2.16)

x(w), y(w), z(w) - describe coordinates of node w (calculated using functions FWSP
(see Table 2.1) when we W1 or FWSP2 (see Table 2.2) when we V),

v""(id,(a,b)) - maximal velocity of the unit id on the arc (a,b) taking into account

topographical conditions,
0" (id,(a,b)) = o™ (id)- FOP(id, (a, b)) (2.17)

v™(id) - maximal possible velocity of the unit id resulting from technical

parameters of the vehicles belonging to this unit,

o™ (id)= min v*"(p) (2.18)

peZVeh(id)

ZVeh(id) - set of vehicles belonging to the id unit, v*(p) - maximal velocity of the
vehicle p (resulting from its technical parameters),
FOP(id,(a,b)) - slowing down velocity function for the id unit on the arc (a,b),
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FOP(id,(a,b))=
FSDV2((a,b), T, veh(p), me(T,), pr(T,), pd(T,))
peZVeh(id) , whena,be W,
ZVeh(id)
> FSDV(a[yveh(p),..)+ > FSDV(bveh(p),..)
peZVeh(id) peZPoj(id) , whena,be W,
2ZVeh(id)
> FSDV(a[}veh(p),...)
peZVeh(id) +
~ 2ZVeh(id)
Y. FSDV(FW,0nW,(b),5, veh(p),000) (2.19)
| PEZVeh(id) , whenae Wl, be W2 .
27 Veh(id)
Y. FSDV(FW,0nW,(a),} veh(p), 1))
peZVeh(id) +
27 Veh(id)
Z FSDV(b,1}, veh(p), 1)
pE2E _  when ae W,,be W,
27ZVeh(id)
Function I» is defined as follows:
d(a,b), when (a,b)e U*
lz«a,b»:{( ) . 220)
oo, otherwise
Function I3 is defined as follows:
FCam(a, T,) ;FCum(b,To) , whenabeW,
FCam(EW,0nW,(a), T,) | FCam®,T) W, be W,
L((a,0)) = FCam(a, T )2 FCam(FW, OnW(i) T,) 221
2' 0o/ 4 22 ~02, whenae W,,be W,
FCam(szgnW(a), L), FCam(FWzS"W(b)f L) whena,be W,

We use these functions in chapters 5.3 and 6.1. Similar terrain model is used in the
SATDS - Guru (Antkiewicz et al., 2009¢; Najgebauer, 2008a).

In the Zlocien system some terrain classification = method
(Najgebauer & Tarapata, 2004d) for decision automata for an attack and defence on
the tactical level which is based on the defined terrain model is also used. This
method is one of the part of the first stage of automata described in (Antkiewicz et
al., 2003; 2004a; 2004b; Najgebauer et al., 2007b) and in chapter 5.2, and it is based
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on presented model of the terrain. The idea of the method is to estimate terrain
region in which own and opposite units will operate to obtain one of the four of
kinds of the terrain: go, slow go, no go, no move. The first kind of the terrain (go) is
excellent for movement (e.g. plain terrain), the second one (slow go) is good for
movement (e.g. soft-hilly terrain), the third kind of the terrain (no go) is poor for
movement (e.g. hard-hilly terrain or mountainous terrain) and the last kind of the
terrain (no move) describes impassable terrain (e.g. lakes, seas, high mountains).
The region (action strip) in which own and opposite units will operate is divided
into rectangular or trapezoidal subregions (each of these for subordinate unit).
Inside each of the subregions and between adjacent subregions we determine
shortest paths from the start to the end of the region (the start of the region is
taking from the side of own units and the end of the region is taking from the side
of opposite units). These paths are determined taking into considerations all
characteristics having influence on movement in the subregions and between
adjacent subregions (terrain topography, weather, the time of the day, season of
the year). The movement planning algorithms use modifications of shortest paths
algorithms (SPA) such as: Dijkstra’s SPA, Johnson’s SPA in thin networks, A* SPA,
geometric SPA (see chapter 6.1.2). After this step we obtain square matrix with

dimensions: number_of _subregionsxnumber_of_subregions which elements s, , j€ [0,1]

equals relation between time on the shortest path from start of the region I to end
of the region j and between minimal travel time from start of the region I to end of
the region j inside the subregion k under ideal environmental conditions.

Estimation Sy of the k-th region equals mean value from among S, - The region of

the terrain is classified as go, slow go, 110 go, no move if estimation Sy of the region is
not greater than some critical value (set as parameters of simulator to calibrate
terrain classification, (Antkiewicz et al., 2006)). The kind of the terrain determined
using described method is component of classification vector which define the
decision situation in automata (Antkiewicz et al., 2003; 2004a; 2004b). On the basis
of this vector the variants of decisions are generated and the optimal decision is
selected.
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3.1. Introduction

Movement (paths, routing, motion) planning is an essential element in many
applications (LaValle, 2006): transportation, computer networks, mobile robots, car
navigation, virtual agents in computer games, etc. From the point of view of
military application, explained in this monograph, it is very interesting. Object
movement is an essential element of combat actions and it is related to manoeuvre
planning of military detachments on the battlefield during battle as well as
preparing for it. This process is very important from the point of view of
simulating complex processes in military systems. It may have an effect on
accuracy, adequateness, effectiveness and other characteristics of these systems.
Redeployment planning and simulation of military objects is a basic problem
especially in combat simulators or CGFs. As an inseparable part of CGF, modules
for route planning based on the real-terrain models are used. They have
submodules to generate digital terrain and for route planning they use processed
terrain information. For example, in ModSAF (Modular Semi-Automated Forces) in
module "SAFsim", which simulates the entities, units, and environmental processes
the route planning component is located (Longtin & Megherbi, 1995). Other
terrain-based path planning modules have been described in chapter 2.2.

Many route planners in the literature are based on the off-line path planning
algorithms: a path for the object is determined before its movement. These
algorithms are divided into two groups (Zhan & Noon, 2000): Iabel setting
algorithms and label correcting algorithms. The following are exemplary algorithms of
the label setting approach: modified Dijkstra’s algorithm (Dijkstra, 1959) with
a priority queue represented by d-ary heap (O(Alog:V), where V - number of
nodes of a graph, A - number of edges (or arcs) of a graph, d= max{Z,(A / V}})
proposed in (Tarjan, 1983), with priority queue represented by Fibonacci heap
(O(A+V logV)) proposed in (Fredman & Tarjan, 1987), with buckets (Zhan & Noon,
1998), symmetric Dijkstra's algorithm (Zhao, 1997), A* algorithm (average time
proportional to O(ﬁ V) (Korf, 1999). Very interesting group are geometric path
planning algorithms (Mitchell, 1999) or its variants (Korf, 1999; Logan, 1997a;
Logan & Sloman, 1997b; Rajput & Karr, 1994; Tarapata, 1999a; 2001; 2003a; 2004a;
Undeger et al., 2001). As label correcting algorithms we can apply: Bellmann-Ford’s
algorithm with complexity O(VA), Pallottino algorithm (Pallottino & Scutella,
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1998), PDM algorithm or others (Gabow-Tarjan’s algorithm (Gabow & Tarjan, 1989)
with complexity O(\/V Alog(VIW) where W is the largest absolute weight of edges)

or the algorithm presented in (Ahuja et al., 1988) (O( A+ V,/logIV))).

For finding all-pairs shortest paths we can apply V times (for each node) the
modified Dijkstra’s algorithm (O(VAlogsV)), Johnson’s algorithm in sparse
networks (Johnson, 1977) (O(V2logV+VA)) or algorithms in DAGs (directed acyclic
graphs) e.g. the Bellman algorithm (O(V+A)). For example, A* has been used in
a number of Computer Generated Forces systems as the basis of their component
planning, to plan road routes (Campbell et al., 1995), to avoid moving obstacles
(Karr et al., 1995), to avoid static obstacles (Rajput & Karr, 1994) and to plan
concealed routes (Longtin & Megherbi, 1995). Moreover, the multicriteria approach
to the path determined in CGF systems is often used. Some results of selected
multicriteria paths problem and analysis of the possibility to use them in CGF
systems are described, e.g. in (Tarapata, 2007d). A very extensive discussion
related to geometric shortest path planning algorithms was presented by Mitchell
in (Mitchell, 1999) (references consist of 393 papers and handbooks). The geometric
shortest path problem is defined as follows: given a collection of obstacles, find an
Euclidean shortest obstacle-avoiding path between two given points. Mitchell
considers the following problems: geodesic paths in a simple polygon; paths in
a polygonal domain (searching the visibility graph, continuous Dijkstra’s
algorithm); shortest paths in other metrics (L, metric, link distance, weighted
region metric, minimum-time paths, curvature-constrained shortest paths, optimal
motion of non-point robots, multiple criteria optimal paths, sailor’s problem,
maximum concealment path problem, minimum total turn problem, fuel-
consuming problem, shortest paths problem in an arrangement); on-line
algorithms and navigation without map; shortest paths in higher dimensions.

The basic idea of the on-line path planning algorithms (Korf, 1999), in general, is
that the object is moved step-by-step from cell to cell using a heuristic method.
This approach is borrowed from robots motion planning (Behnke, 2004;
Kambhampati & Davis, 1986; LaValle, 2006; Logan & Sloman, 1997; Undeger et al.,
2001). The decision about the next move (its direction, speed, etc.) depends on the
current location of the object and environment status. Examples of on-line path
planning algorithms (Korf, 1999): RTA* (Real-Time A*), LRTA* (Learning RTA¥),
RTEF (Real-Time Edge Follows), HLRTA*, eFALCONS. For example, the idea of RTEF
algorithm (Undeger et al., 2001) is to let the object eliminate closed directions (the
directions that cannot reach the target point) in order to decide on which way to go
(open directions). For instance, if the object has a chance to realize that moving
north and east will not let him reach the goal state, then it will prefer to go south or
west. RTEF finds out these open and closed directions by decreasing the number of
choices the object has.
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However, the on-line path planning approach has one basic disadvantage: in this
approach using a few criterions simultaneously to find an optimal (or acceptable)
path is difficult and it is rather impossible to estimate, the moment of reaching the
destination in advance. Moreover, it does not guarantee finding optimal solutions
and even suboptimal ones may significantly differ from acceptable solutions.

Organization of this chapter is as follows: chapter 3.2 contains decomposition
and a multiresolution approach to path planning (based on the papers (Tarapata,
2004a; 2010a; 2010c)), in chapter 3.3 models and algorithms for multiobjective
(multicriteria) paths planning have been described (based on the papers (Tarapata
1999a; 2000e; 2005¢; 2007d)), chapter 3.4 contains analysis of specific disjoint paths
planning models and algorithms (based on the papers (Tarapata 2006b; 2008e;
2010g; 2011d)). Presented applications and examples of methods being described
concern military applications but these methods are interdisciplinary.

3.2. Decomposition and Multiresolution Paths Planning

3.2.1. Description of the Problem

Multiresolution paths (paths in multiresoultion environment model, see
chapter 2.1) are very interesting from many applications point of view (mobile
robots (Ahuja et al., 1988; Kambhampati & Davis, 1986; LaValle, 2006), battlefield
simulation (Tarapata, 2003a), Computer Generated Forces (Petty, 1995),
transportation or navigation (Chou et al., 1998). These are fields, which describe
either the size of the environment or environment complexity (3D terrain). For
example, in a battlefield decision support and simulation systems, planning
models of movement based on a multiresolution environment (see definition in
chapter 2.1) are used. This is the nature of a hierarchical structure of military units
and methods of their behaviours on a simulated battlefield. For a company level of
units, greater precision of terrain (environment) model is required than, for
example, the brigade level (see details in chapter 3.2.6).

The multiresolution paths problem is strongly connected with the problem of
tinding the shortest paths in large-scale networks. There are two main approaches
to the shortest paths problem in large-scale networks: (a) to decompose a problem
or environment (network, graph) in which we plan into smaller problems and then
solve subproblems (Ahuja et al., 1988; Kambhampati & Davis, 1986; Pai & Reissell,
1998); (b) to apply on-line algorithms which find and "merge" path cell-by-cell
(Didjev et al., 1995; Korf, 1999; Tarapata, 2003a). The first group of approaches is
called multiresolution methods. As local algorithms inside all of these methods,
algorithms described in chapter 3.2.1 are used. For example, authors of
(Kambhampati & Davis, 1986) present a method based on cell decomposition and
partitioning space into a quadtree and then use a staged search (similar to A*
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algorithm) to exploit the hierarchy. The goal of the approaches presented in (Pai &
Reissell, 1998) is to navigate a robot without violating terrain dependent
constraints decomposing the terrain with wavelet decomposition. Authors of the
paper (Chou et al., 1998) present some Hierarchical Algorithm (HA), which is
designed to look for paths in large networks representing road networks.

Subchapter 3.2.3 presents a decomposition method (DSP - decomposition
shortest paths) and its properties, which decrease computational time of path
searching in multiresolution and large graphs. The goal of the method is not only
computation time reduction but, most of all, using it for multiresolution path
planning. Presented in chapter 3.2.6 is the method of how to use it for
multiresolution battlefield modelling and paths planning.

3.2.2. Definitions and Notations

Let graph G=<VG,AG> be given (see Fig.3.1b) as a representation of an
example of terrain squares (see Fig.3.1a), where Vi describes a set of nodes

(squares of terrain), V= V=G , Ac describes a set of arcs,
A; C {(x,y> c V. xV, : square x is adjacent to square y} , A=A=G :

For each arc <X, y>e A; we have cost c¢(x,y) value as the crossing time (c(x,x)=0,

c(x,y)=+c when <x, y>€ A¢). The problem is to find the shortest path from the
source node s to the destination node t in G with the assumption that G is large in
size and, simultaneously, to prepare the data structure (a graph) for
multiresolution path planning. The idea of the approach is to merge geographically
adjacent small squares (nodes belonging to V) into bigger squares (called b-nodes,
see Fig. 3.1c) and to build b-graph G* (graph based on the b-nodes, see Fig. 3.1d)
using a specific transformation. This transformation is based on the assumption

that we set an arc (b-arc) between two b-nodes x = V,,y =V, when two such

nodes as xe x',y € y exist and that <x,y>e A; (x and y are called "border" nodes).

Formal definition of the graph G is as follows: G*=<Vé,Aé>,

Ve =1{x,,x,,...,x,} — set of b-nodes, V,=n, A;=m, x; ={x;,%,,...,x,}CV,; and

each x: , 1=1,n generates subgraph of G,
Al ={<x*,y*> cVxVi: 3 (xy)e AG} (3.1)
xex*,yey*
Let us note that parameter dn (length of the b-node side, see Fig. 3.1c) may be used
instead of parameter n for creating graph G* and it may be computed as follows:

dn=.V /n when (Vmoddnz):O.
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The cost of the b-arc <x*,y*>e A issetas ¢ ™(x’,y) and ¢ ™ (x,y): ¢

is represented by the cost vector of the shortest of the shortest paths from any node
belonging to x" to any node belonging to y* for each predecessor z* of x". This is
a vector, because the cost from x" to y* depends on the node, from which we
achieve x* (therefore, for each predecessor of x* we have a cost value, see Fig. 3.2).
This cost is calculated inside the subgraph built on the nodes belonging to x", v
and z". Cost ¢

shortest paths from any node belonging to x* to any node belonging to y* for each
predecessor z* of x".

*max (

,y’) is represented by the cost vector of the longest of the

For further discussion we will use the following notations:

W(x",y") — subset of nodes belonging to x*, which are adjacent ("border") to

any node of y*, W(x',y) ={xe x 3 (x,y)e AG},
yey*

D(x,y) - set of paths between nodes x and y in graph G;
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d(x,y) = (Xy =X, Xy evs Xy, = Y) — €lement of D(xy),

i=0,1(d(x,9))-1

<x1’x1+1>e AG’
d(x))-
L(d(x,y))= c(x;,x,,,) — cost of path d(x,y) from x to y;
D™ (W (x ,Z* JW(y',v")) — set of shortest paths in G between nodes
belonging to W(x',z") and W(y',v):

d" (x, y)e D(x,y): xe W(x',2),ye W(y,0),
L(dm‘“(x, )= min L(d(x,y))

(x,y)eD(xy)

D™ (W(x',z),W(y',v")) =

¢™(x",y") — minimal of minimal cost vector for arc <x*, y*> € A_ from x"to v/,

mm( ’y) < Z*-n(x*’y*)>z*e{v*€V*:<v*’x*>EA*},

from x” to " when the predecessor of x"is z7,

P

¢™™(x",y) — minimal of minimal cost

¢y, min L))+ ~ min Ld(,- 3.2
2y )= (D™ (W (%2, W (3% (@) (D™ (W(x%,y )W (y%,%) () (5.2
¢ ™ (x",y") — maximal of minimal cost vector for arc <x*,y*>e A; from x" to

% *max * * _ *max * * max . . .
Y, ¢ ™ (x,y )—<C x Ly )>Z*€{v*€V*2<U*’x*>€A*} "(x",y’) — maximal of minimal cost

for arc <x*,y*> € A. when the predecessor of x* is z°,

Iy )= max L(d(,)) + max Ld(,) 33

d( D™ (W (x%,2%), W (x*y%) ’ d(-)eD™ (W (xy ), W (y*x%)
D*(x*y*) — set of paths between nodes x" and y" in graph G,

d'(x,y")= (%) =%, X1, X, s Xsguyyy =Y ) —€lement  of  D'(x’y) and

v <x1,xl+1>e AL,

=01 (d (" y )1

L™ (d(x",y’)) — cost of path d'(x’y’) from x* to y’, which is based on
Y,

L™d (L y ) =cn (xo,x)+ >, el (x,x,) (34)

where p(x,) denotes the predecessor of x, in G” representing the "direction", from
which we start path planning in x, (we use this interpretation, for example when
<x*,y*>e A, and x,y represent internal nodes of path d'(v"z"); then
L™ (d(x,y))=c Coir )( ",y") and p(x") denotes the predecessor x* on path d'(v",z")). If

the information about p(x;) is unimportant then p(x,)=x,. Let us note that the
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interpretation of p(x;) allows us to write (3.4) as the sum of length of parts of path

d'(x",y’) as follows:
L*min(d*(x*,y*)) = Z L*min(d (xl 7 x1+1)) Z C;I(lz{r,l)(xl ’

. X, >0
p(xi): . .

x, 1=0

Without the presented interpretation of p(x;) the calculation of the length of
d (x',y") as the sum of the length of its parts like in (3.5) would be impossible. We
can define L™ (d (x",y’)) as the cost of path d*(x"y") from x" to y*, which is based

on ¢

*max (

",y'), analogically to (3.4):

F(d (xy")-1

L™ d (L, y ) = () + D e2™(x,xi,) (3-6)

Finally, we denote with d ™(x’,y’) the shortest path in G from x" to y* with
¢ ™ (x",y") cost function and with d ™" (x",y") the shortest path in G* from x* to y*
with ¢™(x',y") cost function. For d™(x,y) and d™(x,y) following

conditions are satisfied:

L@ ™ ()= min L™d(),  L™@™0)= min C™E,),

where D(-,-) describes the set of paths in G* between pairs of b-nodes.

™" (A,B)=(c'T"(A,B),c'y" (A, B))

| | [ s c™(A,B)=(c"T™(A,B),c's™(A, B))

W(A,E)={1,3}; W(A,B)={3,4}; W(B,A)={5,6};

m-—
19,1
~

5 16 B £(A/B)= (- ,.)eD‘“‘"(IV%lAr}E),W(A,B)) LG+
|5 |9 + d(-)eDmn Iv%‘/liAnB W(B,A L(d(')) =0+5=5
S n (D™ (W(A,B),W (B,A))
*max A B max L d )+
( ) d(-)eD™™ (W(A,E),W(A,B)) ( ( ))
+ max L(d(,))=6+7=13

d(./.)EDmin(W(A/B)/W(B/A))

*min *max

Fig. 3.2. The interpretation and calculation method of ¢ ;"(A,B) and ¢ ;" (A,B) as components of
¢™(A,B) and ¢™ (A,B); calculation of c‘;‘;'"(A B) and ¢ ™ (A,B) in accordance. As "border" nodes
of A to B we have W(A,B)={3,4}
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3.2.3. Decomposition Shortest Paths Algorithm (DSP)

3.2.3.1. The idea of the DSP algorithm

The branch-and-bound (decomposition) algorithm for shortest paths finding

(DSP algorithm) consists of two main phases: (1) constructing graph G* (steps 1-3);

(2) finding the path from source s to destination t (steps 4-5). It uses Dijkstra’s

algorithm with k-ary heaps (k=max{2,[ A/ V—|}) (because graph G is sparse and

k-ary heap is very effective (Tarjan, 1983)) and may be presented in 5 steps:

1.

merge nodes from graph G (Fig. 3.1b) into n big nodes (b-nodes) as subgraphs
of G (Fig. 3.1c) (n is the parameter of the algorithm);

set each of the subgraphs obtained in step 1 as b-nodes and set b-arcs in this
graph as described by (3.1) obtaining graph G* (Fig. 3.1d);

(a) for each x € V and for each z €V, such that <x*,z*>e 4 to determine the
shortest path trees (SPTs) inside x* for each xe W(x,z") as a source node;
(b) calculate costs ¢ ™"(-,-) and ¢ ™™(.,-) for each arc of G” using (3.2)-(3.3);
find the shortest path d ™ (x_,x,) and d ™(x,,x,) in G* with cost functions
¢™(,,-) and ¢™(,,-) (lower and upper restriction on length of the path from s

to t) between such pairs x_,x, of b-nodes that se x_, te x, (see Fig. 3.1d);

find shortest path from s to t (s-t path) inside subgraph generated by nodes of G
belonging to b-nodes of d ™ (x,,x,) (d ™ (x,,x,)):

a) if x, =x, then to find the shortest s-t path inside the subgraph of G generated
by nodes belonging to x, =x, (use paths calculated in step 3a);

b) otherwise, if x, # x;, then s-t path may be found constructing the DAG with
arcs directed from s to subset W(x,=x,x;), then from W(x,=x,,x,) to
W(x,,x,), then from W(x,,x;) to W(x;,x,) etc. and lastly — from
W(xl o

" x*)),x; W ay) 101 (Fig. 3.3). The arc cost in DAG, is between nodes x

and y, and the length of the shortest path is calculated in step 3a.

/

N

Fig. 3.3. Constructing DAG for the last step of the DSP algorithm. Firstly, arcs link s with nodes

inside x;, bordering on x, , then link previous nodes with nodes of x, bordering on x_, etc.)
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Fig. 3.4. An example of the path found in the DSP algorithm

An example of the path found by the DSP algorithm is presented in Fig. 3.4.
Base mesh of nodes (from graph G) is drawn using the smallest square scale.
B-nodes of graph G" are drawn using the smallest gray circles (single b-node
consist of 4x4 nodes from G), big gray circles denote path in G and big black circles
—pathin G".
3.2.3.2. Properties of the DSP algorithm

The DSP algorithm has some interesting properties. Theorem 3.1 shows lower
and upper restriction on the length of the shortest path in G using the DSP
algorithm. Theorem 3.2 shows the time and space complexity of the DSP
algorithm.

Theorem 3.1

Let L'(s,W(x_,x,)) denote the length of the longest of the shortest paths from s to any node
of W(x_,x,) and x, denote the direct successor of x_ on the path from x, to x,. For each

s, teVgand x_,x, €V, x_ #x, such that s€ x_, te x, the following formula is fulfilled:

L™ (d ™ (x,, %)) +L'(s, W(x,, %)) 2 L(d™ (s, £)) 2 L™ (d ™ (x,, x,)) (3.7)

Proof is presented in Appendix 3.A.1. Conclusions resulting from Theorem
3.1:

e if path from s to t exists in the G graph then path from x, to x, exists in the G’
graph and the DSP algorithm will find it;

e if G=G" then the lower restriction equals the upper restriction (the DSP
algorithm gives an optimal solution); otherwise, length L(d™"(s,t)) of the

shortest s-t path is restricted by the left and the right side of the inequality (3.7).
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Theorem 3.2

: _ c:A. > R” . -
Let digraph G=(V,Ag), s,te Vg, G and cardinal n representing the number of
b-nodes in G" be given. Then the total time of the DSP algorithm (for preparing G* and
finding shortest s-t path) is equal

O(«/V3 /n logk(V/n)+nlogkn)
O(\/V3/n+A+V)

(3.8)

k=max{2,[A/V]}

and the space , where .

Proof:

We must determine the complexity of each step of the algorithm.
Step 1. It can be done in O(V) time;

Step 2. Each b-node has at most [V /n] nodes and N’:4(L/V/n_|—1)

"border" nodes. For each of the "border" nodes we must check at most 4 nodes of
its neighbours to set the arc in G*, we have to repeat it n times for each b-node, thus

it requires time O(n«/V / n) ;
Step 3a. For a single b-node we have N'= 4(HV / n_l —1) border nodes and for

each of them we have to determine the shortest paths tree using Dijkstra’s
algorithm with k-ary heap, k=max{2,[A/V|}=max{2,[4V/V]}=4, thus for

a single b-node it takes time 4((«/V/n—|—1)-0((\//n) -log,(V /n)). We calculate it n
times and obtain a complexity of this step as follows: o(JV3 /nlog,(V/ n)) ;

Step 3b. For a single b-node we have two cost vectors ¢ ™ (,-),c™(.,-) each of
them having at most 4 components. Calculation of each component takes time
proportional to 2\/|_V / n-|\/]_V /n|, thus the total time is proportional to
8n-2[V /n]=O(V);

Step 4. G" has n nodes and at most 4n arcs, thus calculation of the shortest

path in G* using Dijkstra’s algorithm with k-ary heap takes time O(nlog,n),
k=max{2,[4n/n}=4;

Step 5. In the worst case d'(x,,x,) may have n b-nodes. By building DAG we
can use only ZW nodes and ( v/ n'|)2 =[V /n] arcs inside each b-node and

( [V /ﬂ)z:[v/ﬂ arcs between b-nodes (Fig.3.3), thus number of arcs in the

worst case is equal 21|V /n|. Using Bellman’s algorithm (Bellman, 1958) for the
shortest path in DAGs complexity is O(n« IV /n +V) .
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Let us note the 3rd step is a "bottleneck" of the algorithm (if n—1 then
JV? /nlog,(V /n)— \/ﬁlogk V') and 4th step (if n—V then nlog, n — Vlog, V).

O(\/V3 /nlog,(V /n)+nlog, n)

Hence, the total time complexity of the DSP is .
Space required is determined by step 3a; SPT for a single source node inside

each b-node contains at most [V /n| nodes (this is the number of nodes inside

a single b-node), inside each b-node we determine SPT 4((\/\/ / n—‘ —1) times (for
each border nodes as the root of SPT) and we have n b-nodes, hence it requires

space proportional to O(/V® /n). Moreover we need space for graph G (O(A+V))
and G* (O(4n+n)), hence it requires O(A+V) space. Thus the total space required by

the DSP algorithm is O(\/V® /n+A+V).

3.2.4. Experimental Analysis of the DSP Algorithm

To examine the DSP algorithm we have used two models of the mesh S
network with dimension 200x200 nodes and a structure similar to the one from
Fig. 3.1b (only north-south-north, east-west-east arcs are permitted for each node,
of between 4),
(Tarapata & Godlewski, 2011c): S1 — random arcs from network S have been

hence maximal number arcs two nodes is equal

cancelled and for each of the arc the random cost from the range [1, 4] has been set
(after all the network has 119574 arcs); Sz — all possible arcs between nodes have
been conducted and for each of the arc random cost from the range [1,4] has been

set (after all, network have had 159200 arcs). Exactly 500 paths for randomly
generated s-t pairs using the DSP and A* algorithms have been determined.
Results for S1 are presented in Table 3.1 and for S2 —in Table 3.2.

Table 3.1. Experimental computation time and accuracy of the DSP algorithm for the $; network

dn Number Number of G* Time of DSP | Time of A* Error
of b-nodes b-arcs generation [s] [s] [%]
(n) (m) time [s] cmin cmax cmin cmax cmin cmax
1 39 843 119 574 3.95 107.12 | 106.01 | 38.74 | 36.48 0 0
2 12 978 43 024 1.93 30.31 | 3214 | 3449 | 36.69 | 6.44 | 12.21
3 6383 22 050 1.66 14.23 | 14.09 | 32.97 | 33.44 | 12.12 | 14.65
4 3791 13 202 1.39 9.06 8.32 | 34.32 | 31.67 | 16.75 | 14.88
5 2519 8 748 1.50 6.05 5,57 | 33.54 | 32.38 | 20.98 | 14.11
10 748 2384 2.66 2.90 215 | 32.00 | 33.40 | 25.22 | 9.77
20 241 676 448 2.75 1.7 35.51 | 31.18 | 21.09 | 8.39
50 60 140 10.65 7.16 5.52 | 32.64 | 33.00 | 15.46 | 4.41
100 20 40 16.93 1793 | 1813 | 3244 | 3295 | 0.56 | 0.61
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Table 3.2. Experimental computation time and accuracy of DSP algorithm for the S» network

dn | Number Number G* Time of DSP | Time of A* Error
of b-nodes of b-arcs generation [s] [s] [%]
(n) (m) Hme [S] cmin cmax cmin cmax cmin cmax
1 40 000 159 200 498 108.11 | 107.46 | 33.12 | 35.83 0 0
2 10 000 39 600 1.89 2592 | 26.08 | 37.17 | 35.19 | 12.68 | 9.85
3 4489 17 688 1.69 1143 | 10.85 | 3795 | 38.6 | 2599 | 9.59
4 2500 9800 1.8 6.62 6.43 | 36.18 | 36.77 | 27.86 | 7.75
5 1600 6240 1.91 449 417 | 3213 | 34.21 | 25.56 | 6.88
10 400 1520 3.38 3.15 204 | 3772 | 32.82 | 19.99 | 5.45
20 100 360 6.2 411 2.71 | 36.64 | 38.39 | 16.5 | 4.47
50 16 48 14.74 9.59 743 | 36.93 | 34.38 | 18.32 | 25
100 4 8 24.92 19.03 | 19.32 | 33.85 | 32.72 | 438 | 0.54

Columns in Table 3.1 and Table 3.2 contain (from the left): length of the
b-node side (see Fig.3.1c for an interpretation), number of b-nodes, number of
b-arcs, generation time of G” (total time for steps 1-3 of the DSP algorithm), total
time of finding 500 paths by the DSP algorithm (total time for the steps 4-5 of the
DSP algorithm, separately for c”" and c), total time of finding 500 paths with the
A* algorithm (separately for ¢ and c"), Error=average absolute (in percent)
difference between path lengths obtained from the DSP and optimal path lengths
obtained from A* (separately for c”" and c"*). Results show that parameter n have
a great impact on effectiveness and accuracy of the DSP algorithm. Both, extreme
large and extreme small values of 7, cause the deterioration of the DSP algorithm
effectiveness and accuracy. Let us observe that for n=1 error of the algorithm is
equal zero, but the computation time is significant greater than for A*. It results
from the idea of the algorithm (G" has a single b-node and only step 5th is
realized). From the analysis results, that the DSP is more accurate for ¢”** than for
cmin This property is described in (Tarapata & Godlewski, 2011c; Godlewski, 2010).

Because the most complex steps of the algorithm (steps 1-3, "bottleneck") are
done only one time (we build the b-graph only one time - initial pre-processing)
then if we compute a single-pair of the shortest path many times it allows us to
amortize time of the "bottleneck". In Fig. 3.5 we present graphs of calculation time
(represented by the number of dominating operations) for finding M shortest paths
using the DSP algorithm and the Dijkstra’s algorithm between random pairs of
nodes. It is easy to observe that the greater the value of n (with the same value of
V) the smaller the number of shortest paths calculation to obtain a shorter time for
the DSP algorithm than for the Dijkstra’s algorithm. For example, to obtain the
same calculation time for the DSP and the Dijkstra’s algorithm for V=1024, n=4 we
must find M*=17 shortest paths (for M<17 the Dijkstra’s algorithm is faster than
DSP, otherwise the DSP algorithm is faster) and for V=1024, n=64 we must find
only M*=3 shortest paths (for M<3 the Dijkstra’s algorithm is faster than the DSP,
otherwise the DSP algorithm is faster). Taking this approach to the results given in
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Table 3.1 for dn=5 we obtain the following data (for ¢”): the time generation of G
is equal TG'=1.5 [s], computation times of finding 500 paths is equal 32.38 [s] for A*
and 5.57 [s] for DSP; hence the average computation time for a single s-t shortest
path calculation is equal: for DSP - TD=5.57/500=0.01114 [s], for A* -
TA™=32.38/500= 0.06476 [s]. We obtain that for M"228 calculation time of M*
shortest paths using A* is greater than using DSP, because M -TA">TG + M -TD
that is 28-0.06476 =1.81328 >1.5+28-0.01114 =1.81192..
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Fig. 3.5. Graphs of calculation time (represented by the number of dominating operations) for
finding the M shortest paths using the DSP algorithm (continuous line) and the Dijkstra’s algorithm
(dashed line) between random pairs of nodes (V=1024, n=4, n=16, n=64, n=256)

Moreover, the comparison of the DSP with the Hierarchical Algorithm (HA)
presented in (Chou et al., 1998) has been conducted using the S» network
(described at the beginning of this chapter). To understand the algorithm we
present a short description of the HA. The Hierarchical Algorithm is designed to look
for paths in large networks representing road networks. A road network in this
model is divided into low level sub-networks (so-called micronetworks). If two
nodes between which we find a path belonging to the same sub-networks then the
path is looking for only in this sub-network (even then the optimal path uses nodes
from other sub-networks). If two nodes belong to different sub-networks then the
algorithm takes into consideration additional high level sub-network (so-called
macronetwork, which is the sub-network of the original one). Each node from
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a macronetwork belongs to one or more micronetworks. Micronetworks may
identify the network of local roads and macronetworks may identify highways and
express roads. Looking for the shortest path between nodes belonging to different
sub-networks relies on looking for a path from the initial micronetwork (source
node belongs to this network) to any node m of the macronetwork, finding a path
inside the macronetwork and then finding a path inside the destination
micronetwork (destination node belongs to this network). If a macronetwork
contains more than one node, then we must decide which node (m) must be
choosen. We consider two strategies to this selection: NearestHA and BestHA. In the
NearestHA strategy we choose the nearest macronetwork's node to the
source/destination node in the micronetwork. In the BestHA strategy we choose
such a node from macronetwork, for which length of the paths being found is the
shortest. Path planning between micronetworks may be done using only the
macronetwork.

In order to use HA we "cover" the S» network with macronetwork G™ (as mesh
networks) with the length between macroarcs (arcs in the macronetwork) equals
dn=5 (see Fig. 3.6). Exactly 500 paths for randomly generated s-t pairs using the
DSP and the HA algorithms have been determined. Results presented in Table 3.3
show that the HA is faster than the DSP, but the error of the HA is significantly
greater than for the DSP. These results show the high sensitivity of these
algorithms to parameters. Inappropriate parameter settings (e.g. n for the DSP and
dn for the HA) lowers the quality of solutions. The DSP algorithm is more tolerant
to the initial model of a network. Moreover, in order to have correct computations
the HA requires both a whole initial graph and all micronetworks and
macronetworks to be strongly connected.

..........

..........

Fig. 3.6. Macronetwork G™ constructed for dn=>5
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Table 3.3. The comparison of DSP (a) and Hierarchical Algorithm (b)

a)
dn | Number | Number G* Time of DSP Time of A* Error
of b-nodes | of b-arcs | generation [s] [s] [%]
(n) (m) time [s] cmin cmax cmin cmax cmin cmax
4 2500 9 800 1.8 6.62 6.43 36.18 | 36.77 | 27.86 | 7.75
5 1600 6 240 1.91 4.49 417 3213 | 34.21 2556 | 6.88
10 400 1520 3.38 3.15 2.04 3772 | 3282 | 1999 | 545
20 100 360 6.2 411 2.71 36.64 | 38.39 16.5 447
b)
dn G** Phase Time of HA Time of A* Error
generation | I time [s] [s] [%]
time [s] [s] Nearest Best | Nearest Best Nearest Best
HA HA HA HA HA HA
4 168.30 30.40 0.08 0.21 39.17 40.90 25.42 21.44
5 105.70 15.63 0.09 0.19 39.32 41.54 28.65 22.68
10 28.16 12.67 0.09 0.15 40.19 40.46 38.83 22.89
20 7.80 39.40 0.08 0.63 38.58 39.04 44.60 19.30

Shown below are the advantages of using the DSP algorithm for finding the
all-pairs shortest paths in network G. We can formulate acceleration functions
Fpi(V, n) and Fjonn(V, n) as follows:

T ij (V) To n(V)
FDijk(V’ 1’1) = T DIEV n) F]ohn(v’ 1’1) = T ]h(V TZ) (39)
DSP 4 DSP 7

where T, (V), T, (V), Tps(V,n) denotes, respectively, experimental average times

of finding the all-pairs shortest paths in G with V nodes using: V times Dijkstra’s
algorithm with 4-ary heaps, Johnson’s algorithm for sparse networks (Johnson,
1988), the DSP algorithm with n b-nodes.

Let the grid network with V squares (nodes) be given. We can formulate the
following optimization problem: to find such a cardinal #”, for which

F(V,n )— max, F(V,n) (3.10)

,,,,,

In Table 3.4 the experimental impact of V on n*and F(V,n") is shown. The value of
n* may be approximated by function n =1.87-V**and acceleration functions:
E,(V,n')=039V*, F, (V,n")=023V"?, thus the average acceleration of DSP

algorithm with relation to the Dijkstra’s and Johnson’s algorithm is =O(V0-65).

Table 3.4. Experimental impact of the V on n"and Fpi(V, 1°), Fjoma(V, 1) for the all-pairs shortest
paths problem for V various numbers of nodes from G

\% 100 | 500 | 1000 | 5000 | 10000 | 100000 | 200000 | 1000000

n' 9 16 21 36 46 100 130 220
Fpip(V, 1) 9 25 40 118 187 865 1380 4 000
Fiom(V,n") 5 12 18 49 75 320 495 1400
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3.2.5. Parallelization of the DSP Algorithm

The DSP algorithm can be very easily computed in parallel (Tarapata, 2010a).
Because the DSP algorithm uses the Dijkstra’s shortest path (or A*) algorithms
(s.p.a.) as local-searching one, thus it is required to take into consideration the
known results of the parallelization of this algorithm and the other s.p.a. There are
many papers dealing with the problem of parallelization of s.p.a. Authors of the
paper (Paige & Kruskal, 1985) propose a parallel version of the Dijkstra's
algorithm, which uses a global reduction to extract the minimum distance node
and then partitions the set of neighbours of that node among multiple processors.
Using a binary heap-structured priority queue, this scheme has a running time of

O(A/p+k-V)-logV, where A and V are the number of edges (arcs) and nodes in

the graph, p is the number of processors, and k is a constant representing the
relative cost of communication vs. computation on the particular platform.
A significant parallel speedup is possible only if A /p[] k. Authors of the papers

(Kumar et al., 1994, sect. 7; Grama et al., 2003, sect.10) show several approaches for
parallelization of Dijkstra’s s.p.a., in which execution time Tjpix of parallel the
Dijkstra's  algorithm  using p  processors is  proportional  to:
T

p,Dijk

=(A/p)-logV+Vlogp for the hypercube structure of the parallel computation
system and T .., =(A/p) logV+V\/E for the mesh structure of the parallel

computation system. Authors of the paper (Pantziou et al., 1990) show efficient
parallel algorithms, on the CREW PRAM! model, for generating a succinct
encoding of all pairs shortest path information in a directed planar graph G with
real-valued edge costs but no negative cycles. They assume that a planar
embedding of G is given, together with a set of g faces that cover all the vertices.
Then their algorithm runs in O(log?V+log3g) time and employs O(Vg) processors.
Moreover, they present O(log?p) time, p-processor algorithms for various
subproblems, including that of generating all pairs shortest path information in
a directed outerplanar graph. Authors of other papers write about: parallelization
of single-source s.p.a. (Atallah et al., 1997; Crauser et al., 1998; Foster, 1995, sect.3.9;
Meyer & Sanders, 2001), parallelization of all-pairs s.p.a. (Atallah et al., 1997;
Foster, 1995, sect.3.9, Han et al., 1997), parallelization of geometric and dynamic
s.p.a (Lanthier et al., 2003, Subramanian, 1995).

Analyzing steps of the DSP algorithm in chapter 3.2.3.2 it is easy to observe
that the 3rd and the 4th steps are dominating from the point of view of algorithm
complexity and they decide on the form of estimation (3.8): the 3rd step is
dominating when n<<V and the 4th step — when n—V. Taking into consideration
that best value " of n (from the point of view of time complexity) is proportional to

T Concurrent Read, Exclusive Write (CREW) Parallel Random Access Machine (PRAM).



46 3. Models and Algorithms for Movement Planning

c-JV with small nonnegative value of ¢ (see chapter 3.2.3.2), for the big value of V
we obtain that step 3rd is dominating. A very important problem from the point of
view of parallelization effectiveness is to assign processors to the nodes (b-nodes)
skilfully. Although we could assign each processor to subsets of nodes belonging
to different b-nodes to try to increase effectiveness of the parallel DSP algorithm
(PDSP), still this assignment may cause significant communication delays. The
smaller migration of the processors between b-nodes the smaller the
communications delay. The ideal solution from the point of view of minimizing
communication delays is to minimize the number of assignments of processors to
b-nodes. By doing this we minimize multiple copying subgraphs (b-nodes) to the
local memory being used by processors. To explain these differences let us
consider the structure of the G from Fig. 3.7a. For example, having p=2 processors
it is better to assign the first processor to the left b-node, the second processor to
the middle b-node (single copying to the local memory of the processor) and next
(after calculating the shortest paths tree inside each b-node for each of the four
nodes) to assign the first and the second processor to the different half of the right
b-node. We then copy the subgraphs (b-nodes) for local memory of the processors
only 4 times. In the worst case, if we omit the condition regarding minimizing
migration of the processors between b-nodes, we may have a situation when each
of the processors is assigned alternately for the left, middle and right b-node and
we copy b-nodes for local memory of the processors V times (for each node inside
each b-node). We consider two versions of parallelization: with and without
parallelization of the Dijkstra’s algorithm being used as a searching algorithm in
the 3rd and 4th steps of the DSP. Let ¢, (x)=x-logx describe the time complexity

of the Dijkstra’s algorithm in formula (3.8) and Nz(V/ﬂ,N‘:éL([JV/nW—l).

Thus we can write (3.8) as follows: T, = O(n N th (N) +tp (n)) :

Theorem 3.3

The acceleration A(p) of the parallel DSP (PDSP) algorithm using p processors
without parallelization of the Dijkstra’s s.p.a. inside the DSP is as follows:
n-N" tDijk(N) + tDijk(n)
(” / P] "N*" tDijk(N) + tDijk(n)

when n2p2>1

‘Nt (N)+t,,
A(p)=£= n Dl]k( ) Dz]k(n) , When 1’l-N'>p>n
TP

(3.11)
’_(” /p)-N ‘_l ‘ tDijk(N) + tDijk(n)

n-N"tp, (N)+tp,(n), when p2n-N'

and no communication between processors is required.
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Proof:

To prove the theorem we considered three cases of p values. We showed the
Ty complexity of the PDSP algorithm with p processors determining the form of the
Ty function. Let Tp(p) describe the number of the Dijkstra’s algorithm’s parallel
runs (d.a.p.r.) inside the 3rd step of the DSP algorithm using p processors. For p=1,
Ts(1)isequal T,(1)=n-N".

If n>p=>1 then, in the first step, each of the p processors can be assigned to

each of the p b-nodes of G’ (see Fig. 3.7). This step uses |n/p|-N' d.a.p.r. For the
remaining n—|n/p|-p<n b-nodes we use (n—|n/p|-p)-[N'/p|<N' dap.r.

Thus we can write that

Ty(p)=|n/p| N'+(n-|n/p|p)[N'/pl<(n/p]+1)-N'<[n/p]-N' dap.r.
Therefore the 3rd step of the DSP algorithm can be estimated using
|n/p|-N'<STy(p)<[n/p]-N' d.ap.r. and hence the estimation for both the 3rd

and the 4th step of the DSP algorithm is as follows: T, =[n/p|-N"tp; (N)+tp(n).

This estimation is the equality when (n mod p)=0 and otherwise ("<") it is an
inequality. For example, using p=2 processors (see Fig. 3.7a) we first assign each of
the p=2 processors to different b-nodes (dashed-line squares with 1 on the top) to
calculate the shortest paths tree (SPT) for 4 nodes inside each b-node

simultaneously using | n/p |-N'=4 d.a.p.r. Next, for the remaining n—|n/p|-p=1
b-nodes we assign p=2 processors to the subsets of N'/p=2 nodes (dashed-line
rectangles with 2 on the top) to calculate the SPT for 4 nodes inside the b-node
simultaneously using (n—|n/p|-p):[N'/p|=2 d.apur (total d.a.p.r. = 4+2). Using
p=3 processors (see Fig.3.7b) we assign each of the processors to each of the
b-nodes (dashed-line squares with 1 on the top) to calculate the SPT for 4 nodes
inside each b-node simultaneously using the total [n/p |-N'=4 d.a.p.r.

1 1 1 1 1

o T ST

V=12

p=2<n => T, (2)=4+2=6 d.a.p.r. p=3=n =>T,(3)=4 d.a.p.r.
(a) (b)
Fig. 3.7. Processors assignment for n>p=1: (a) for p=2; (b) for p=3

If n-N'>p>n then we assign |p/n| processors to each of the n b-nodes of

the graph G"and additionally 1 processor to each of the p—n:|p/n]| b-nodes (see
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Fig. 3.8). Thus, if (p mod n)#0, then p—n:|p/n| b-nodes have | p /n|+1 assigned
processors and |p/n| processors otherwise, and they use |(n/p)-N'| d.ap.r.
Finally, for the remaining n — (p -n-|p/ nJ) b-nodes we assign processors using 1
d.a.p.r. Therefore the 3rd step of the DSP algorithm can be estimated using
Ty(p)=[(n/p)-N'] dap.r. and> T,=[(n/p)-N"]-tp; (N)+ty(n). For example,
using p=5 processors (see Fig. 3.8a) we first assign n-|p/n|=3-1 processors to
different b-nodes and additionally 1 processor for each of the p—n:|p/n|=2
b-nodes (dashed-line squares with 1 on the top) to calculate SPT for 4 nodes inside
each b-node simultaneously using | (n/p)-N'|=2 d.a.p.r. Next, for the remaining
n—(p-n-|p/n])=3-2 bnodes we assign 2 processors: each for the nodes

belonging to the remaining b-nodes (dashed-line rectangles with 2 on the top) to
calculate SPT for two nodes inside the b-node simultaneously always using 1
d.a.p.r (total d.a.p.r. = 2+1). Using p=2n=6 processors (see Fig. 3.8b) we conduct
analogical calculations when p=n=3 processors (see Fig. 3.7).

1

-2 [0 810l foe] (ool (ool (o0
5/!_172430—0%&—&6—&0—0

p=5>n => TB (5)=2+1=3
d.a.p.r.

(a) (b)
Fig. 3.8. Processors assignment for nN'>p>n: (a) for p=5; (b) for p=6

p=6=2n => TB (6)=1/2"4=2 d.a.p.r.

If p>n-N' then we assign n-N' processors to each of the n-N' nodes
(N' processors to each of the n b-nodes) of the graph G using T,(p)=1 parallel
da.pr.and T, =1-t,, (N)+£p;(1).

Because the acceleration function A(p) of the parallel algorithm using p
processors is defined as (Foster, 1995, Kumar et al., 1994; Grama et al., 2003):
A(p)=T, /T, thus we obtain formula (3.11) using T, =n-N"t,,;, (N)+tp; (n) and

T, defined as in the proof. Let us notice that, if t,, (n)0 N"“t,,(N) then the

acceleration function has the following form: (n2p21)=A(p)=n/[n/p],

2 Let us observe that [ (n/ p)- N | may not be equal [ (n/p)]|-N .
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(n-N'>p>n)=A(p)=n-N'/[(n/p)-N'], (p=2n-N')=A(p)=n-N'. Effectiveness
E(p) of the PDSP is defined as (Foster, 1995; Grama et al., 2003): E(p)= A(p) / p-

In order to consider the parallelization of the Dijkstra’s algorithm inside the

DSP algorithm we use two estimations for T, time complexity of parallel
Dijkstra’s algorithm using the p processor given in (Kumar et al., 1994, sect.7):

T

p.Dijk

(V)=(1/p)-A-logV+Vlogp for the hypercube structure of the parallel
computation system and T, ., (V)=(1/p)-A- 10gV+V\/; for the mesh structure

of the parallel computation system. Let the follwing be given:

tg]ijk,p(N) = @ P Jj_ ‘ tDijk (N)+N log{ pNJ and tgijk,p(n) =(1/p)- tDijk (n)+nlogp

n-N' n-

for the hypercube structure of the parallel computation system

and tEI\)Iijk,p(N) = @n .I;\].D_ i (N)+N {ﬁ“ and tgijk,p(n) =(1/p) Epie (n)+ 7’l\/;

for the mesh structure of the parallel computation system.

Theorem 3.4

The acceleration A(p) of the parallel DSP (PDSP) algorithm using p processors with
the parallelization of the Dijkstra’s s.p.a. is created by replacing in the denominators of

(3.11) tpik(N) with tg’l.].k,p(N) for p>nN" and tpix(n) with tp, (n) for all p.

Proof:

It has been shown that the tpjk(1) estimation concerns the 4th step of the DSP
algorithm, which is done after the 3rd step of the DSP so we can compute it in
parallel independently of parallelization of the 3rd step. From the first element of
the T, pijx formula results that having p processors we may calculate single shortest

path p times faster (hence we have (Ip)tpii(n) in tp, (7)) and for the second

element of T),pijx — communications "costs" are proportional to nlog p. The form of

the t~

pir,,(IN) estimation results from the following reasoning: we can compute in

parallel the Dijkstra’s s.p.a. inside the 3rd step of the DSP only for p>nN', because
we use all processors when p<n-N' (see proof of the theorem 3.3). When the

p mod (nN')=0 then we assign p/nN' processors for each of the n b-nodes, so each
of the nodes inside each of b-nodes uses p/nN' processors to compute the SPT

parallelly and compute it |p/n-N'| faster than having a single processor. Thus

p from the T}, pj formula is equal to | p /n-N'| in the formula #3, (N).
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Fig. 3.9. Graphs of simulation results of acceleration A(p) for the PDSP algorithm (V=256, ne {4, 9,
16, 25, 64}) for the hypercube (a) and the mesh (b) structure of the parallel computation system.
Continuous line concerns version of the PDSP with parallelization of the Dijkstra’s s.p.a. and the
dashed line - without parallelization of the Dijkstra’s s.p.a.
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Fig. 3.10. Graphs of the simulation results of the E(p) effectiveness for the PDSP algorithm (V=256,
ne{4, 9, 16, 25, 64}) for the hypercube (a) and the mesh (b) structure of the parallel computation

system. Continuous line concerns the version of the PDSP with parallelization of the
Dijkstra’s s.p.a. and dashed line - without the parallelization of the Dijkstra’s s.p.a.
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In Fig.39 and Fig.3.10 we present simulation results (done using
MATHEMATICA 6.0 kernel) for acceleration (Fig. 3.9) and effectiveness (Fig. 3.10)
of the PDSP algorithm for both cases defined in theorems 3.3 and 3.4 (when we
parallelize and when we do not parallelize the Dijkstra’s s.p.a. inside the DSP
algorithm) and for two types of the structure of parallel computation systems:
hypercube and mesh. We have conducted these researches for V=256 and different
values of n: 4, 9, 16, 25 and 64. The greater n the better it shows the differences
between effectiveness and acceleration (for the same p) for the case when we
parallelize d.s.p.a. inside DSP. Moreover, it is visible that computations with
parallelization of the Dijkstra’s s.p.a. inside the DSP algorithm using the hypercube
structure is a little more effective and we obtain a little better acceleration of the
PDSP algorithm than using mesh structure.

3.2.6. Multiresolution Paths and the DSP Algorithm

Multiresolution environment is a nature of the hierarchical structure of
military units and methods of their behaviours on a simulated battlefield. For
a company level of units, greater precision of the terrain (environment) model is
required than, for example, for the brigade level. In a battlefield simulation many
models of the environment (terrain) representation is used (see chapter 2.1). The
most popular are two representations: regular grid of terrain squares (Fig. 3.11a)
and regular grid of terrain hexagons (Fig.3.11b). The advantage of the first
(square) terrain representation is especially visible in a multiresolution context (see
Fig. 3.11c-e). The size of the terrain square may be dynamically changed and it
depends on the required level of units. A square with a greater size than the basic
size can be defined as a square matrix of basic-size squares (for example, in
Fig. 3.11d each square has a size of 2x2 basic squares). Such a representation is not
possible for hexagons, so square representation is more useful for multiresolution
terrain modelling and path planning. In Fig. 3.11c-e an example is shown of path
determination in the three-level graph: (c) the first level is the most detailed; (d) the
second level is two times less detailed than the first; (e) the third level is four times
less detailed than the first. These models may describe for example the platoon,
company and battalion levels on the battlefield. Let us note that it is easy to obtain
a multiresolution model of terrain by defining graph G" recurrently. If we establish
that graph G defines a terrain model of the first level (e.g. company level) than G
defines a model of the second (or higher) level (e.g. battalion level). This reasoning
may be used to increase or to decrease each required level of model resolution.
Parameter n of the DSP algorithm (nef{l,...,V}) can be used to decide on the
dimension of G". Then, the DSP algorithm may be used for finding multiresolution
paths in such a multiresolution environment model. For example, in Fig. 3.11c
G'=G and contains n=256 b-nodes (for the platoon level), in Fig. 3.11d G* contains
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n=64 b-nodes (for the company level) and in Fig. 3.11e G" contains n=16 b-nodes
(e.g. for the battalion level).

It is important to say that the presented method differs from very effective
representations of terrain using quadtree (Kambhampati & Davis, 1986) because of
two main reasons: (1) elements of the quadtree, which represent a terrain have
a non-regular size, (2) in majority applications quadtree represents only a binary
terrain with two types of regions: open (passable) and closed (impassable). This
approach is very effective for mobile robots, but it is not adequate to represent
multiresolution battlefield (Tarapata, 2003a).
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Fig. 3.11. Examples of terrain representation in a simulated battlefield: a) regular grid of terrain
squares; b) regular grid of terrain hexagons; multiresolution shortest path from s to t using the DSP
algorithm in G* c¢) G*=G contains 16x16 nodes; d) G* contains 8x8 nodes; e) G* contains 4x4 nodes

Let us note that the multiresolution approach for path planning represented
by finding shortest paths in recurrently defined G" can also be used for multistage

path planning: first we can find a "rough" path d ™(x,,x;) (or d ™(x_,x,)) — in
a "rough" terrain represented by G (for example in Fig. 3.11e) and then we can find
an accurate path in a more detailed environment (represented by G with small
squares, Fig. 3.11c; more precisely: we find the shortest path from s to t (s-t path)
inside the subgraph generated by nodes of G belonging to b-nodes of d™"(x.,x,)
(or (d ™ (x.,x,), see the 5th step of the DSP algorithm). This is an example of

top-down modelling.
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3.3. Multiobjective Paths Planning

3.3.1. Description of the Problem

The aim of this chapter is to analyze the complexity of the multiobjective
(multicriteria) shortest paths (MOSP) problems and to show how we can use
modifications and advantages of fast implementations of the Dijkstra’s algorithm
(using effective data structures such as the Fibonacci's heaps and d-ary heaps) in
order to effectively and optimally solve the selected the MOSP problems.

The problem of finding the shortest path from a specified origin node to
another node has been considered, traditionally, in the framework of the single
objective optimization. More specifically, it is assumed that a value is associated to
each arc (for example, the length or the travel time), and the goal is to determine
the feasible path for which either the total distance or the total travel time is
minimized (see chapter 3.1). In many real applications it is often found that a single
objective function is not sufficient to characterize adequately the problem. In such
a case the (MOSP) are used. There are many publications, which deal with these
problems in two frequently used domains: computer networks (Cidon et al., 1997;
1999; Grzech, 2002; Kerbache et al., 2000; Silva & Craveirinha, 2004; Tarapata,
2005c) and transportation (Caramia & Guerriero; 2009; Dial, 1979;
Halder & Majumber, 1981; Rana & Vickson,1988; Fujimura, 1996, Modesti
& Sciomachen, 1998). For instance, in transportation networks, a typical situation
that can be adequately represented only considering more objectives is related to
military route planning, where time, distance, ability to camouflage on the path
must be taken into account at the same time (Tarapata, 2003a; 2007d). Another
application, in which it is important to deal with several factors, is represented by
path planning, where the goal is to find a navigation path for a mobile robot
(Fujimura, 1996). In this case, the navigation path can be considered acceptable
only if it satisfies multiple objectives, such as safety, time and energy consumption.
In computer networks (as a special case of transportation networks) routing
problems are one of the most essential applications of the MOSP problems. The
most often used criteria of route selection depend on quality of service (QoS)
(Silva & Craveirinha, 2004). These criteria are, for example, as follows:
minimization of the number of lost packages; minimization of maximal delay time
of packages; minimization of the number of disjoint routes or minimization of
maximal transmission time for the disjoint routes (in case of disjoint routes);
minimization of overload, measured with the mean value of traffic crossing by
link; minimization of transmission time from source to destination; minimization
of route length; minimization of probability of route unreliability or maximization
of probability of route reliability. Single-criterion formulations of routing problems
use previously defined criteria. The choice of an appropriate method for solving
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the defined problems depends on answers to the following questions: whether we
want to determine routes statically (algorithms: Dijkstra’s, Ford-Bellmann’s, PDM,
A*) or dynamically (adapting to current load) (Djidjev et al., 1995); are there
stochastic dependencies in the network (Sigal et al., 1980; Korzan, 1982; 1983a;
1983b; Loui, 1983; Tarapata, 1999a; 2000e); whether we find the path for a single
task or simultaneously for many tasks (e.g. through disjoint paths transmitting
voice and picture or allocating channels in optical networks) (Li et al., 1992;
Schrijver & Seymour, 1992; Sherali et al., 1998; Tarapata, 1999a); whether we plan to
determine alternative paths (Golden & Skiscim, 1989). There are many papers
which deal with the description of practical examples of using many criteria in
routing problems (Kerbache & Smith, 2000; Silva & Craveirinha, 2004). For
example, authors of the paper (Climaco et al., 2002) consider a bicriterion approach
for routing problems in multimedia networks. In practical considerations we often
use contradicted criteria e.g. fast and reliable access to the services (risk-profit)
(Korzan, 1982; 1983a; 1983b; Loui, 1983; Tarapata, 1999a; 2000e; 2007d). In such
cases we can formulate and solve multicriteria optimization problem to support
the decision of network designers (in computer or transportation networks) or
administrators (traffic managers in transportation).

3.3.2. State of the Art in the Multiobjective Shortest Paths Problems (MOSP)

The MOSP problems are among the most tractable of NP-hard discrete
optimization problems (Garey & Johnson, 1979). In the work of (Hansen, 1979) the
existence was proved of a family of problems with an exponential number of
optimal solutions. This implies that any algorithm solving the multiobjective
shortest path problem is, at least, exponential in the worst case analysis. On the
other hand some papers (Warburton, 1987; Vassilvitskii & Yannakakis, 2004;
Tsaggouris & Zaroliagis, 2005) show that practical &approximate algorithms are
generally limited either to problems having 2 or 3 criteria, or to problems requiring
the gapproximation of only certain restricted sets of efficient paths. One of the
most popular methods of solving the MOSP problems is the construction
of approximate Pareto curves (Papadimitriou & Yannakakis, 2000; Vassilvitskii
& Yannakakis, 2004). Informally, a (1+&)-Pareto curve P, is a subset of feasible
solutions such that for any Pareto optimal solution, there exists a solution in P, that
is no more than (1+&) away in all objectives. Papadimitriou and Yannakakis in their
work (Papadimitriou & Yannakakis, 2000) show that for any multiobjective

optimization problem there exists a (1+&)-Pareto curve P, of (polynomial) size E

=0((4B/ &N-1), where B is the number of bits required to represent the values in the
objective functions (bounded by a polynomial in the size of the input), that can be
constructed by O((4B/ €)9) calls to a "gap" routine that solves (in time polynomial in
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the size of the input and 1/ ¢) the following problem: given a vector of values of g,
either compute a solution that dominates a, or report that there is no solution better
than a by at least a factor of 1+& in all objectives (see definition 3.1 in chapter
3.3.3.1). Extensions to this method to produce a constant approximation to the
smallest possible (1+¢)-Pareto curve for the cases of 2 and 3 objectives are
presented in (Vassilvitskii & Yannakakis, 2004), while for N>3 objectives
inapproximability results are shown for such a constant approximation. For the
case of the MOSP (and some other problems with linear objectives), Papadimitriou
and Yannakakis (Papadimitriou & Yannakakis, 2000) show how a "gap" routine
can be constructed (based on a pseudopolynomial algorithm for computing exact
paths), and consequently provide a FPTAS (Fully Polynomial Time Approximation
Scheme) for this problem. Note that FPTAS for the MOSP problems were already
known in the case of two objectives (Hansen, 1979), as well as in the case of
multiple objectives in directed acyclic graphs (DAGs) (Warburton, 1987). In
particular, the  2-objective case has been  extensively  studied
(Ehrgott & Gandibleux, 2002), while for N>2 very little has been achieved; actually
the results in (Warburton, 1987, Papadimitriou & Yannakakis, 2000;
Tsaggouris & Zaroliagis, 2005) are the only and currently the best FPTAS known
results. Let C"»* denote the ratio of the maximum to the minimum edge weight (in
any dimension), V denotes the number of nodes in a digraph, A denotes the
number of arcs (edges) and N is the number of criteria. For the case of DAGs and

£

max N-1
N>2, the algorithm of (Warburton, 1987) runs in O(VA (M) (log 2)" _2)

time, while for N=2 this improves to O(VA%longog(nCmax)). For N=2, a FPTAS

can be created by repeated applications of a stronger variant of the "gap" routine —
like a FPTAS for the restricted shortest path (RSPP) problem (Hassin, 1992;
Lorenz & Raz, 2001; Ergun et al., 2002). In (Vassilvitskii & Yannakakis, 2004) it is

shown that this achieves a time of O(VAP_:(Iog logV +l)) for general digraphs and

O(VAP_; / 8) for DAGs, where E is the size of the smallest possible (1+¢&)-Pareto

curve (which can be as large as log,,, VC™ = >In(VC™)). All these approaches

deal typically with the single-pair version of the problem. Authors of the work
(Tsaggouris & Zaroliagis, 2005) show a new and remarkably simple FPTAS for
constructing a set of approximate Pareto curves for the single-source version of the
MOSP problem in any digraph. For any N>1, their algorithm runs in time

£

max N-1 max N-1
O(VA (M) j for general digraphs, and in O(A(%) j for DAGs.

These results improve significantly upon previous approaches for general digraphs
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(Golden & Skiscim, 1989; Hassin, 1992) and DAGs (Henig, 1985; Hassin, 1992), for
all N>2. For N=2 their running times depend on &-1, while those based on
repeated-RSPP applications (like in (Vassilvitskii & Yannakakis, 2004)) depend on
£-2. Their approach for the MOSP, unlike previous methods that are based on
converting pseudopolynomial time algorithms to FPTAS using rounding and
scaling techniques, builds upon a natural iterative process that extends and merges
sets of node labels representing partial solutions, while keeping them small by
discarding some solutions in an error controllable way. One of the first papers,
which dealt with the MOSP problems, was (Loui, 1983). The paper explores
computationally tractable formulations of stochastic and multidimensional optimal
path problems. A single formulation encompassing both problems is considered, in
which a utility function defines preference among candidate paths. The result is
the ability to state explicit conditions for exacting solutions using standard
methods, and the applicability of well-understood approximation techniques.
Korzan wrote three papers (Korzan, 1982; 1983a; 1983b), which deal with the
shortest path problem in unreliable networks. In the first one he presents methods
of determining the optimal path in unreliable directed networks under different
assumptions concerning randomness of network elements. He assumes the
vectoral objective function with two components: path length (e.g. time) and some
measure of unreliability (e.g. probability of path "surviving"). An appropriate
multioptimization problem and method for determining compromise path for this
problem is described there. Some extensions of problems and their solving
methods included there were discussed in further two papers (Korzan, 1983a;
1983b). In the papers (Tarapata, 1999a; 2000e) an optimization problem of a few
tasks sending in a parallel or distributed computing system under conditions of
unreliability of computers and lines is considered. As a model of the system
a network is used with functions described on its nodes (time of task service in
node and probability of nodes (computers) reliability) and arcs (time distances
between nodes and probability of arc (line) reliability during transmission). The
damaging process of a network element (node or arc) is begun: when a task starts
its service in it (for a node) or its movement (for an arc) and it does not depend on
the time, which elapsed from the start time of tasks sending (Tarapata, 1999a);
when tasks start its service (or movement) in source nodes (Tarapata, 2000e). In the
second case, the "time-life" distribution of network elements depends on the time,
which elapsed from the start time of tasks sending. It may be explained by the fact
that, for example, the probability of damaging an element of a computer network is
grows in time. In the military communication systems the probability of destroying
elements of the system depends on its working time (the longer the system
working time the greater the possibility of the system locating and, in consequence,
the higher the probability of annihilation of any elements of the system).
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A problem for determining the best set of K>1 disjoint paths in an unreliable
network is formulated as a two-criteria optimization problem, in which the first
criterion is the time of sending the slowest task (or the sum of times of sending all
tasks) being minimized and the second one - the probability of reliability of all
(K>1) paths being maximized. An approximation algorithm to solve the
optimization problem is shown. The algorithm generalizes the Dijkstra’s shortest
path algorithm in the case when we look for the K (K>1) disjoint paths in the
network with two functions (probabilities and distances) described on the network
nodes and arcs. Moreover, some conclusions concerning particular conditions,

which the paths should satisty, are given.

Table 3.5. Classification of the Multiobjective Shortest Path Problems (MOSP)

Code of the problem References
2-SUM/E/LC (Tung & Chew, 1988; Brumbaugh-Smith & Shier, 1989;
Skriver & Andersen, 2000)
2-SUM/E/LS (Hansen, 1979)
2-SUM/E/2P,LC (Mote et al., 1991)
2-SUM/E/SP (Martins & Climaco, 1981; Climaco & Martins, 1982;
Huarng et al., 1996)
2-SUM/E/DP (Henig, 1985)
2-SUMY/ Appr(E)/Appr (Hansen, 1979)
1-SUM 1-max/E/SP (Hansen, 1979; Pelegrin & Fernandez, 1998)
2-SUM/C/IA (Current et al., 1990)
2-SUM/U/SP (Henig, 1985)
2-SUM/U/TA (Murthy & Olson, 1994)
2-SUM/e/IA (Coutinho-Rodrigues et al., 1999)
2-SUM/C,SCH/LS (Korzan, 1982; 1983b)
2-SUM/lex,SCH/LS (Korzan, 1983a; 1983b)
3-SUM/E/LC (Gabrel & Vanderpooten, 1996)
3-SUM/C/IA (Gabrel & Vanderpooten, 1996)
Q-SUMY/SE/SP (Henig, 1985; White, 1987)
Q-SUM/E/LS (Martins, 1984)
Q-SUM/E/LC (Tung & Chew, 1992; Corley & Moon, 1985; Cox, 1984)
Q-SUM/E/DP (Hartley, 1985; Kostreva & Wiecek, 1993)
Q-SUM/Appr(E), Appr(MO)/Appr (Warburton, 1987)
Q-SUM/C/IA (Henig, 1994)
Q-sum/u/Dp (Carraway et al., 1990)
Q-sum/u/sp (Modesti & Sciomachen, 1998)
Q-SUM/MO/DP,BB (Rana & Vickson, 1988)
Q-SUM/MO/LC (Murthy & Her, 1992)
Q-SUM/U,SCH/Appr (Loui, 1983)

Q-SUM/MO,D,C lex,SCH/Appr,LS

(Tarapata, 1999a; 2000e; 2005c; 2007d)
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Generally, the multiobjective shortest path problem can be considered from
the point of view of the following categories: number of criterions, type of problem
(compromise solutions, lexicographic solutions, max-ordering problem, etc.),
solution method (label setting or correcting algorithm, tabu search algorithm,
simulated annealing algorithm and others). In Table 3.5 we classify the MOSP
problems (as modification of classification proposed in (Ehrgott & Gandibleux,
2002)) using notation X/Y/Z where: X describes the number and type of objective
functions (X=Q stands for an arbitrary number of objectives, e.g. 1-SumQ-max
denotes a problem with the sum and Q bottleneck objectives), Y denotes the types
of problems, Z denotes the types of solution methods. The entries for the Y
position are as follows: E — finding the efficient set, ¢ — finding a subset of the
efficient set, SE — finding supported efficient solutions, Appr(x) — finding an
approximation of x, lex — solving the lexicographic problem (preemptive priorities),
MO - max-ordering problem, U — optimizing a utility function, C/S — finding
a compromise respectively satisfying the solution, D — disjoint-path problem, SCH
- stochastic problem. The entries for the Z position are as follows: SP — exact
algorithm specifically designed for the problem, LS/LC — label setting or label
correcting method, DP - algorithm based on dynamic programming, BB -
algorithm based on branch and bound, IA — interactive method, 2P — two phases
method, Appr — approximation algorithm with worst case performance bound.

Other particular multiobjective path problems are presented in (Dial, 1979;
Engberg et al, 1983; Halder & Majumber, 1981; Sancho, 1988; Wijeratne et al., 1993).

3.3.3. Model of the MOSP Problem

3.3.3.1. Formulation of the MOSP problem
Let the directed graph G= <VG,AG> be given, where V¢ - set of graph nodes,

Ve={1,2,...,V}, Ac - set of graph arcs, A, C {(v,v'> 10,0'€ VG}, A =A. For example,

in computer networks we have routers as nodes of G and physical links between
routers as arcs of G. Generally, for each arc of G we may define arc functions

fu(v,v"), n=1,...,N, which describe such characteristics of the arc <v,v'>e A, as:

transmission time, distance, load, reliability, capacity, acceptable flows, etc. We
assume that, there are K tasks, which we need to transport from source nodes i* to

destination ones i¢, i* =(i*(1),i*(2),...,i°(k),....i*(K)), i* = (i(1),i(2),....i'(k), ....i"(K)).

For K=1 we have a classical case of routing for a single task. In some examples used

in the chapter we use a computer network model such as G with predefined matrix

1

v,0 v, 'l Zv,0' 7 Yo'l Yoo v,v'

k .
c=[cvv]vrv, where ¢ ‘:<c c’ c ck >, ¢, - nonnegative value

describing transaction (transmission) time (cost) of the k-th task on the arc
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<v,v‘>e A (when v#0"). Moreover, let I (i°(k),i*(k)) describe the simple path and
T, (i°(k),i"(k)) describe achieving times of nodes belonging to the path for the k-th
task as follows:
L@ ()i (k) = (106 = 2 (), (K)o (K, () =i (K)) - (3.12)
T, (i (k),i(k)) = (z‘o(k), 7'(k),... 7' (k), ..., T (k)) (3.13)
where: i’(k)— the r-th node on the path for the k-th task; 7'(k) — achieving time of
the r-th node on the path for the k-th task,

0= Xk T=LR=LEK (3.14)

We establish that if K=1 we omit index k (i.e. i"(1)=i", 77(1))=77, etc.).

We describe by M(i5,i%) the set of acceptable K-dimensional vectors of paths
in G from i to i4, and by I(i5i9) - the element of M(i5i). It can be observed, that
I(i5,i%) is a vector which components are simple paths for each k-th task. We also
establish, that [=I(i5,i%) (we omit i* and i4 in the description). We assume that we

have a N-component vector F(I)= <F1(I ), E(), ... Fy(I )> of criteria functions
estimating vector of paths Ie M(i5,i%). We have an arc function fu(v,v’), <v,v'> €A,

ne {1,..., N}, which will be used to calculate Fy(I) (e.g. as a sum of values of fu(v,v")

for arcs belonging to the path I). Thus, we can say that we have defined in the set
M(i%,i%) the vectoral objective function as follows:

F()=(

The multicriteria shortest paths (MOSP) problem can be formulated as follows:

E(I), E(I),..., Ey(I)), Ie M(is,i) (3.15)

(M(#,i"), F(I),R") (3.16)
where R” c YP(#*,i")x Y"(i*,i") is the domination relation in the criteria space
YP (i, ={y(1) = F(I) = (F,(I), E,(I), ... Fy(I)) : 1€ M(i*,i")} and (3.17)

R” ={(F(L,,),F(1,))e Y°(,)x Y (") : ¥ (F(I,), F(1,)) =1} (3.18)

lP(F(Im)/ P(Iz)) B {(1) when F(IM) 'is better" than F(Iz)

m

3.19
otherwise ( )

We can solve problem (3.16) using various methods of finding the so-called
nondominated solutions. The set of nondominated results equals:

YND(iS,id):{y(I)e YP(,) : ~ EID(',' (z(I),y(I))e R” (3.20)
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The set of nondominated solutions (paths) is determined as an inverse image

of YN°(i*,i") as follows:
M (i°,i%) ={Ie M, s y(D)e YNP(,) } (3.21)

In order to solve the MOSP problems other approaches are also used, e.g. the
vector &domination (Warburton, 1987; Tsaggouris & Zaroliagis, 2005). The vector
&domination method uses Definition 3.1.

Definition 3.1 (Warburton, 1987)

We say that vector a =<a1,a2,..., aN> &dominates vector b =<bl,b2,..., bN> for

the fixed £= 0 (we write: a <b ), if the following formula is satisfied:

vV oa,<(l+€)b, (3.22)

n=1,N
In some approaches it is additionally assumed that for at least one of the

ne{l,..,N}, eg. n” we have a,<(1+¢€)-b,. It can be observed that for &0 this

concept reduces to the usual notion of vector dominance. To use this approach we
have to replace the domination relation (3.18) with the &domination relation

£

R? ={<F(Im),F(Iz)>e YP(,)xYP(,): F(Im)gF(Iz) and we can solve a problem of

tinding the &shortest path which, according to (3.22), has cost no more than (1+¢)
away from the optimal values for all objectives. Warburton in the paper
(Warburton, 1987) studies methods for approximating the set of Pareto optimal
paths in multiple-objective, shortest path problems. He gives the approximation
methods that can estimate the Pareto optima to any required degree (&) of
accuracy. The basis of his results is that the proposed methods are "fully
polynomial": they operate in time and space bounded by a polynomial in problem
size and accuracy of approximation - the greater the accuracy, the more time
required to reach a solution.

3.3.3.2. Example of the routing problem formulation as a two-criteria
optimization problem

In the example of the routing problem formulation as the MOSP problem it
is assumed that on each arc (v,0') of the G graph we additionally define a function
q,.(t) (identical for each task k =1,K, so we omit k in the description of q,.(t)),
which describes the probability of the arc reliability at least at the time t:
q,.(t)=Pr{7,., 2t}, %o - nonnegative random variable representing "time-life" of

the arc (v,0"). We assume that random variables %, are nonnegative and
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independent for each pair <v,v'> of arcs. Then for each vector of paths I in G we
can define the probability that all K disjoint paths will "survive" as follows:

Ry

p(I(lS,ld)) - Hqi"l(k),i’(k) (Cjiil(k)'iy(k)) (323)

k=1 r=1
Next we also define the time of achieving the destination nodes by all K tasks, as

time of achieving the destination node by the most delayed task (3.24) or as a sum
of achieving times of the destination nodes (3.25):

T(I(°,i") = max ™ (k) or (3.24)
T(1(,i%)= . (k) (3.25)
ke{1,..,K}

Then the vectoral objective function (3.15) has the form of:

F(I)=(T(I), P(I)), IeM(isi?), (3.26)
i.e. F1()=T(I), F2()=P(I). Criteria space Y"(i*,i") has the form:

YP(i*,i") ={F(I)=(T(I),P(I)) : Ie M(i*,i")}, (3.27)
and function (3.19) (which causes that relation (3.18) is a Pareto relation):

1 when (T(I,)<T(I,)AP(I,)2P(I))v
W(F(1,),F(1))= v(T(I,)ST(I,)AP(1,)>P(I)) (3.28)

0 otherwise

z

We can equivalently define the problem formulated above as follows: to

determine I'(i*,i%)e M(is,id), for which

)
(3.29)
P:PI q,.d — PI.s,-d
( (i 1)) y igr);z}\%,id) ((z 1)) or
’\*_ . A s ed — . _ s +d
P _I(iS,iEI)l}AI}iS,i”)P(I(l & )) I(i—",iy)g/li}ﬁ,id)l P(I(Z % )) (3-30)

Generally, if the objective is to maximize one or more components of F(I)
from (3.15), the MOSP algorithms can be applied to compute efficient paths only if
G is acyclic (DAG). If G contains cycles and N=1 we solve the NP-hard longest path
problem (for N>1 the problem is at least as difficult as for N=1) (Garey & Johnson,
1979). Therefore, we assume that all components of F(I) are minimized and all of
these have nonnegative values.
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3.3.4. Methods of Solving the MOSP Problems

3.3.4.1. Methods of solving single-criterion subproblems of the MOSP problem

Method of determining T" and P~ from (3.29)-(3.30) depends on number K of
tasks, for which we determine paths. If K=1, then we have the classical shortest
paths problem in graph G for fixed pairs of nodes (%, i) with the arc function ¢, . .
This problem could be solved for the criterion function T(I(i*,i")) using, e.g.

algorithms described in chapter 3.1. When the arc function is nonadditive or
nonlinear we can use the approach described by the authors in (Bernstein & Kelly,
1997; Cai et al., 1997) or we can formulate a nonlinear optimization problem and

solve it using Kuhn-Tucker’s optimality conditions. For the function Is(l(is,id)) the
approach presented in (Korzan, 1983b) could be used. Even though the function
IS(I(is,id)) from (3.30) is multiplicative (multiplications of probabilities), then it is
possible to obtain an additive form as follows:

K R,

p(1(,i) =YY

k=1 r=1

k
ln qi'_l(k),i’(k) (Cir_l(k),i'(k)) (3.31)

Defining the arc function as: fl(v,v')z‘ln qv,v‘(cv,v,) we can solve the problem

(3.29)-(3.30) optimally using the Dijkstra’s algorithm (because of function f,(v,v') is

additive and nonnegative). The obtained solutions (i.e. I'(i*,i")) both for function

IS(I(iS,id)) and 1:3(1(1'5,1'[')) are identical. Other approaches to find the best path in

stochastic graphs are considered in (Corea & Kulkarni, 1990; Cormican et al., 1998;
Sigal et al., 1980; Korzan, 1982; 1983a; Loui, 1983; Tarapata, 1999a; 2000e).
The situation is more complicated when K>1. If we want to find disjoint

routes for K tasks then even for K=2 and function T(I(*,i’)) the problem is

NP-hard (Schrijver & Seymour, 1992; Schrijver, 2004). Disjoint paths problems we
will consider in chapter 3.4.

In further considerations in this chapter we assume that K=1. Let us note that
for K=1 the objective functions (3.24) and (3.25) are equivalent. We also assume that

s d
1, =5, 1, =t.

3.3.4.2. Method of compromise solutions

To find the compromise solution with parameter p=1 we use the & metric in

the YP(, ) space:
g, h(I)) = Hh*,h([)”p = n/i I, —h, (D[ (3.32)

For the compromise result 10 the following condition is satisfied:
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g,(h',h(I))= min ¢, (1",h(I)) (3.33)

TeM(#*,i*

The compromise solution I°e M(i°,i") is such that the formula (3.33) is fulfilled.

Let us note that the metric (3.32) defines different distances from the "ideal" point

(Ameljariczyk, 1984):

e for p=1 we obtain the sum of absolute deviations from ideal point (street
metric);

e for p=2 we obtain the Euclidesian metric (in two-dimensional space =
geometric distance between points) - "the best" compromise (Current et al.,
1990; Gabrel & Vanderpooten, 1996; Henig, 1994; Korzan, 1982; 1983b);

e for p=w we obtain the Tchebycheff metric (minimization of maximal
differences between "ideal" and actual value of criteria); this problem is also
known as the max-ordering problem (Mote et al., 1991; Rana & Vickson, 1988;
Warburton, 1987).

To find compromise solution with parameter p>1 we use the metric & replacing
T(I) with T(I) and P(I) with P(I). In order to find a compromise solution of the

problem (3.16) with a vectoral objective function F(I)=<T(I ), P(1 )> we have to

determine T and P" using the method described in the previous chapter. Having T"

and P* we can define P(I)= i{), T(I)= ? by obtaining the normalized vector
objective function:
() P
hI)={—=, — 3.34
m-(32, X (634

under the assumption, that T#0 and P#0. It can be observed that T(I) 21 and

P(I)<1, Ie M(, ) so we can obtain the normalized ideal point " =(1,1).

For example, for p=1 we obtain:

* ). |, _PA)|
h h()=1-—=+1-— 3.35
e () = 1= 4 g - 2D 639)
From the condition, that 1 —y <0 and 1 —% >0 results:
&, (h ,h(I)) =i{)—1+1— P ({) = T({) - Pq) (3.36)
T P T P

For the compromise h' result the following condition is satisfied:

. ; . ) T(I) P(I
0 W)= min, (D)= min, | TO-FD ] @)



Z. Tarapata — Models and Algorithms for Knowledge-Based Decision Support and Simulation... 69

For the compromise solution I° € M(i*,i") (with p=1) above formula is fulfilled.
I _ P
However, since function I P has positive values then it is difficult to
build an additive nonnegative arc function to calculate it. It is very inconvenient,
because the Dijkstra’s algorithm (as a classical algorithm solving shortest path

problem) requires the values of the arc function to be nonnegative and additive

(function &, 1(1) is nonadditive because of multiplications during the

calculation of the ? value). The author of the paper (Korzan, 1982) shows that

(for single task, ie. K=1) if the arc function g,,(tf) is in the form of

g, ()=, Av,0")>0, that is the probability function P from (3.23) equals:

R,

Ry A3 ) L l.r 1
P(ir,i)=Tq,. (0, )=I]e™ 7= 7 3y
r=1 ' ’

r=1

then the maximization of P(( )) is equivalent to minimization of

Rl
,B(I(is,i"l))=Z:/1(ir_1,ir)-cil,,1 .- In this case we can define a new normalized
r=1 ’

vectoral objective function fi(I) = <T(I) /T, B/ ,B*>, where R(I) = <T(I) , ,B(I)> ,
T()=TU)/T", BI)=pI)/B and ideal point h =(1,1). Determining a new
measure & we obtain & (I, h ‘1 T(I ‘+‘1—,§(1)‘. But 1—T(I)S0 and

1-B(I)<0, so we obtain él(h*,h(I)) =T(I)-1+B(I)-1=T(I)+ B(I)-2. It can be
observed that the function T(I)+ B(I)-2 has the minimum value for the same I as

the function T(I)+ B(I), so the component (-2) may be omitted and we have:

A

2 (W, (1)) = = min |T(I)+f 3.39
&)= min, & ()= min, [ T(1)+A(D)] (3:39)
The objective function from (3.39) is nonnegative and additive. Let us define the
temporary function H(I) as H(I)= T+ (), s
Rl
H(I)=$+%=%; ,,,,, Z/’i(zr Li)c, =

Rl
= [i* + i* N ﬂ(ir—ll 17)) . C~1r—1 T
r=1 T ﬁ Y

In connection with the above we can define the problem of finding the compromise
path I°e M(i*,i") with p=1 as follows: to determine I° € M(i*,i"), such that
H(I)= min H(I) (3.41)

TeM(#* i)

(3.40)
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To solve the problem (3.41) optimally using the standard Dijkstra’s algorithm we
can use the following arc meta-function mf(v,v'):

mf(v,v") = (%4‘%%(0/0'))5;1;'/ (v,0")e Ag (3.42)

The definition presented above has one more interesting property: if for each arc

l):/’i>0 ( ) /12"‘1"

(v,0)e A, it is fulfilled that A7 then = " and

i < T(1) AT()

. >, so we can solve single-criterion problem with criterion T.

T AT
Generally, if arc functions fi, fo, ..., fy are nonnegative, additive (i.e.
Ry(I)-1
Z £.(.(1),1,,,(1))) and all of these are minimized then the & measure from

(3.32) (for p=1) has the form of:

Ry-1

N F (I) N Z f (Ur’ Z)r+1
& (D) = 1 == = S 1 =, (343)
n=1 n n=1 n
where F = min F(I), h(I)= Fl(l) yooes FN(*I) , and h =(1,1,..,1). Because
IEM(l 'd) Fl FN N times
- N
1 ——P’i:(}) <0 forall n=1,N, so we can write that &(h",h(I))= ZM—N . It can be
n n=1 n

N F(I
observed that function ZL*)—N has the minimum value for the same I as

n=1 n

N
function ZM, so the component (—N) may be omitted. In this case for the

n=1 n

compromise result /¢ the following condition is satisfied (problem CSy-1):

N

* 1)

Q0 H(0)= min, & (K H1)= min, 3 E(0) (3.44)
=1

Thus, we can solve the problem CS,=1 optimally using the standard Dijkstra’s
algorithm with the following arc metafunction mf(v,v"):

f(v,0") Zf , (v,0')e Ag (3.45)

Proof of optimality of such an obtained solution is presented in the next
chapter (with Theorem 3.5). For parameters p>1 it is impossible to obtain
a nonnegative, additive, linear form of an arc function so it is rather impossible to
solve the problem of finding a compromise solution optimally using Dijkstra’s
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algorithm. In such cases the problem can be formulated as a quadratic
programming problem (p=2) or max-ordering problem (p=c) (Rana & Vickson,
1988; Warburton, 1987; Mote et al., 1991). Method of compromise solutions with
parameter 1<p<o guarantees obtaining nondominated solutions, i.e.

I‘'e M™°(i*,i") (Ehrgott, 1997; Martins & Santos, 1999).
In chapter 3.3.4.6 we define the CSy=1 problem as a linear programming

problem MOSP_LP1 and MOSP_LP2, problem CSp-> as MOSP_NP1 and problem
CSp=w as MOSP_NP?2.

3.3.4.3. Method with a metacriterion function

In this method we will construct a function, the so-called metacriterion
function, which "merges" all criteria. There are two main approaches to define the
metacriterion function: the first metacriterion function is in the form of a weighted
average of criteria, in the second one we minimize maximal deviations of criteria
values from its "ideal" values (an analogy to compromise the solution with
parameter p=co).

1. Metacriterion function in the form of weighted average of criterions with weights

o, n=1,N 1is defined as follows (under assumptions that all criteria are

minimized):
N
ME(D)=3 @, E (1) (3.46)
n=1
Rlz—:l
fn(vr’vr+1)
Fn*(l)=F”(,,I)= F"(I) =i  n=1N (3.47)
F min F (I) min F (I)
IeM(i,i%) leM(#,i%)

where: F, >0, f,(J0) describes the n-th arc function of G, f,: A, > R, n= 1,N, R

describes the number of nodes belonging to path I. Frequently it is assumed that

- N
weights must satisfy following conditions: «,€(0,1), n=1,N, 205” =1. This
n=1

guarantees obtaining nondominated solutions, i.e. " e M"" (is,id) (Ehrgott, 1997;
Martins et al., 1999).

The problem of finding an optimal solution (problem MF_I) can be

formulated as follows: determine such a I'" € M(i*,i*) that the following condition

is fulfilled:
MF(IMF): mind ME(I) (3.48)

TeM(i*,i')

We can solve this problem using the Dijkstra’s algorithm with a single arc
metafunction mf(v,v') and with a metacriterion function MF(I):
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mf(v,v')zian-f”(ziZJ'), (v,0")e Ag (3.49)
ME()=Y mf(v,0.,) (3.50)

Theorem 3.5

If arc functions fi, fo, .., fn, f:A; = R', i=1,N are additive then we can solve the

problem (3.48) optimally using the Dijkstra’s algorithm with the arc meta-function (3.49).
In this case the meta-function (3.46) is equal to meta-function (3.50).

Proof:

When functions fi, f2, .., fv are nonnegative then the function (3.49)
is nonnegative, and when functions f, f>, ..., fv are additive then the cost of path I is
calculated as a sum of meta-costs of arcs belonging to path I. In this case
assumptions of the Dijkstra’s algorithm regarding the arc function (nonnegativity
and additivity) are satisfied, so we can use this function as the arc function in the
algorithm. Now, we will prove that MF()=LF  from (3.46) is equal

Ry-1

z mf(v,,v,,,) = RG using (3.50). From (3.46) and (3.47) we obtain:

r=0

N . N Zf r+1 N Rl
LF=MF()=Y e E()=Y.a, ”—=Z e f(0,0.0),
i=1 n=1 Fn n=1 r= Fn
and from (3.49) and (3.50) we obtain
R (I)-1 Ri-1 N ) N Rl
RG: mf( r+1 zza f+1 z _Z'fn(vr’le)’
r=0 r=0 n=1 n n=1 r=0 Fn
thus LF=RG.
2

Let us note that arc function (3.45) is a special case of arc function (3.49) (all &, =1),

thus, problem (3.44) is a special case of problem (3.48).
The complexity of the algorithm is presented in Theorem 3.6.

Theorem 3.6

Complexity of the modified Dijkstra’s algorithm (with Fibonacci’s heaps) for solving
problem  (3.48) wusing the arc metacriterion  function (3.49) is equal
O(N(VlogV+A)+NA).
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Proof:

To calculate the arc metafunction (3.49) for each arc we must firstly solve the,
shortest path problem N times for each criterion: it takes time proportional to
O(N(VlogV + A)) using Dijkstra’s algorithm implemented with Fibonacci’s heaps.
Next, we have to separately calculate the metafunction (3.49) for each arc value; it
takes a proportional time of ®(NA) for all arcs. Using the Dijkstra’s algorithm
with the arc metafunction (3.49) we calculate the shortest path in a time of
O(VlogV +A), thus the total time of the algorithm for solving problem (3.48) is

equal O(N(V1logV+A)+NA).

II. Metacriterion function with minimization of maximal deviations of criteria values
from their "ideal" values can be defined using the following temporary function:

min F (I) min F (I)

ﬁn 1) = — TeM(i*,i%) — TeM(i*,i") n=1LN 351

( ) F (I) _F (I) Ri-1 ( )

" z fn(vr’ z)r+‘l)
r=0

Let us note that ?n(l )E (0,1], n =1,_N, so the ideal point is equal 1. Now, we

can define the metacriterion function with minimization of maximal deviations of criteria
values from their “ideal” values (problem MF_2) as follows:

U — min (3.52)
subject to
1-Fu(I)<u, Ie M(#,i% (3.53)
Additional variable u describes maximal deviation of values of criteria functions
F.(I) from their "ideal" values (i.e. 1). From the condition Fu(I)e (0,1] results that

ue€[0,1). In chapter 3.3.4.6 we define this problem in details as a mathematical

programming problem (MOSP_NP3).
We will show that the MF_2 problem can be considered as a problem of

finding (1+¢)-shortest path, £20. Constraint 1-F.(I)<u can be written as follows:

1 *
F (I)<——-F,. Taking into account the definition of the vector (1+¢&)-dominance

=l+e=e=
—-u 1-u

(see (3.22)) we obtain: F(I)<(1+¢)-F, that is . Hence,

u— min is equivalent to £ — min, because & is an increasing function of u.
Therefore, the MF_2 problem can be solved by finding (1+&)-shortest path, where
£ is the smallest value of & such that (1+&)-shortest path exists (we use the
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following property of the (1+¢&)-shortest path: if any path I is the (1+¢)-shortest path
then I is the (1+¢&')-shortest path for each £'>¢). If we set the precision for u to m
decimal places (m is positive and an integer) then the MF_2_half algorithm is
presented below.

Algorithm MF_2_half

L:=0; R:=10"; u*:=infinity;
WHILE |L-R|>1 DO

u’:= L + ceil ((R-L)/2); u:=u’/10%; €:=u/(1l-u);,
Determine (1+€)-shortest path from s; to ti;

IF (l1+€)-shortest path from s; to t; exists THEN

R:=u’; u*:=u;
ELSE
L:=u’;
END IF;
END WHILE;
RETURN u*;

If we denote with T(¢) complexity of the algorithm of finding the (1+¢)-
shortest ~ path  between s1  and t (see (Warburton,  1987;
Papadimitriou & Yannakakis, 2000)), then the MF_2 half algorithm has

a complexity O(log2 10" -T(S)) (because the idea is similar to binary-searching for

value x in a sorted table with 10" elements, where L and R denote, respectively, the
left and right index of subtable range). For example, let the weighted graph be
given in Fig.3.12, s1=1, #=5. The '"ideal" vector of the criteria values is

¢ =(c;,¢5,¢5)=(6,5,2). In the last column of Table 3.8 for each path I from s1=1 to

t1=5 the smallest value of (1+&) such that F(I)<c" is calculated.

Let us set m=1 (we want to calculate u with a precision of one decimal place) for
MF_2_half algorithm. In the first iteration, L=0, R=10, u’=5, u=0.5, &=1. We see in
Table 3.8 that path (e.g. pA) for which the (1+£<2 exists, hence this path is the
(1+(&=1))-shortest path from s1 to #1 and R:=5, u*:=0.5. In the second iteration, L=0,
R=5, u'=2, u=0.2, £&=0.25. Because path (e.g. pA) for which (1+£<1.25 exists, hence
this path is the (1+(£=0.25))-shortest path from s1 to t1 and R:=2, u*:=0.2. In the third
iteration, L=0, R=2, u’=1, u=0.1, &1/9. But the (1+(&=1/9))-shortest path does not
exist, hence L=1, R=2 and exit with u*=0.2.

In chapter 3.3.4.6 we define problem MF_1 as a linear programming problem
(MOSP_LP3) and problem MF_2 as MOSP_NP3.
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3.3.4.4. Method with hierarchization of objective functions

In this approach we order criteria functions according to their importance
(in the set of criteria function we set the lexicographic order), so F; describes the
most important criterion, F; - the second criterion according to importance, etc.

Solution IheM].SN(is,id)CM(iS,id) is found by solving the sequence of

single-criteria optimization problems starting from the most important criterion
(with index j=1, generating set M;(i%i¢)), next taking into account the second
criterion according to importance (generating set M(i5,i?)), etc. Calculations are
continued as long as we achieve My or at the previous stage s<N it occurs that

Ms=1. Each M; set narrows the previously obtained M;: set of acceptable
solutions and it is recurrently defined:
s +d . _ . . —_—
M,(,i") = {I’E Myl )'1:"([})_1@5?11({}#[’)1:’(1)}’ forj=1,N
j 7
M(#*,i%), forj=0

(3.54)

The method of hierarchization of objective functions guarantees obtaining
nondominated solutions, i.e. I"e M"’(i’,i*) (Ehrgott, 1997; Martins et al., 1999).

For example, we considered the lexicographic solution (path) of the problem (3.16)
with vectoral objective function F(I)= <T(I ), P(I )> , where P is defined as follows:

Ry -3 rC;k—lyik Ry r
PU,i=Tle & =[[4,, (Zcﬁwj (3.55)

There is an interesting question: how to find a solution in the following order
of criteria (3.29) importance: T, P? Korzan in (Korzan, 1983a) proved (for K=1) that

if inside the set M""(i*,i") there exist many shortest paths, according to the

criterion T with the same length T" then all of these have the same value of the P
criterion. Because of this fact any node x with the same value of T on the part of the
path from s1 can be considered at the next step of the Dijkstra’s algorithm. Hence,
we can use Dijkstra’s algorithm with the modifications presented in Table 3.6,
where: d(x) describes the value of function T for the path from s to x, c(x,y) is
equivalent to cxy , p(x) describes the value of the P function for the path from s to
x, q(x,y,z) is equivalent to gxy(z).

Modification of the Dijkstra’s algorithm (Dijkstra_Lex2) has the same complexity as
the original algorithm (with Fibonacci’s heaps), that is O(VlogV+A). Generally,

tinding lexicographic solutions (paths) is NP-hard (Garey & Johnson, 1979).
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Table 3.6 Modification of the Dijkstra’s algorithm for finding the lexicographic solution
with T, P objectives

Standard Dijkstra’s algorithm

Dijkstra_Lex2 algorithm

Dijkstra(
G=(V;,A;)» Lc(u,V) 1wy, S1, t1)

FOR EACH node veV; DO

Dijkstra_Lex2(
G=<VG,AG> V4 [C (ul V) ] VxVrsr

lg(u,v,z)]vvsr, S1, t1)

FOR EACH node veV; DO

predecessor([v]:= null; predecessor([v]:= null;
dlv]:= +infinity; dlv]:= +infinity;
d[s;]:= 0; plv]:= 0;
Q:= Vi plsi]:=1;
END FOR; dls;]:= 0;
Q:= Vg;
END FOR;

WHILE Q # null DO WHILE Q # null DO
u:= Extract_Min (Q); u:= Extract_Min (Q);
/u 1s such node that

dlfu]= min{d[v]:veQ}/

/u 1s such a node that
d[u]= min {d[v]:veQ}/

Q:=Q \ {u}; Q:= Q0 \ {u};
IF u=t, THEN IF u=t, THEN
RETURN; RETURN;

END IF; END IF;

FOR EACH arc (u,v)€Ag
starting from u DO
IF d[v]>d[u]+c(u,v) OR
(d[v]=d[u]+c (u,v) AND
plvl<plu]l*q(u,v,d[v]))

FOR EACH arc (u,v)€Ag
starting from u DO
IF d[v]>d[u]+c(u,v) THEN

THEN
d[v]:= d[u] + c(u,v); d[v]:= d[u] + c(u,Vv);
predecessor([v]:= u; plv]:= plul * g(u,v,d[v]);
predecessor([v] := u;
END IF; END IF;
END FOR; END FOR;
END WHILE; END WHILE;

3.3.4.5. Method with threshold values of criteria (Restricted Shortest Path
Problem)

Methods of threshold values (also known as restricted shortest paths problem
(RSPP)) rely on the fact that some criteria functions have fixed critical values and
they narrow the set of acceptable solutions. For example, problem (3.29) could be

written as follows: to determine such a I'(i*,i‘)e M (is,id) , that

P(I P(1G,i")) (3.56)

(i,i))= max
1 ,ieM(i it
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with an additional restriction: T(I (is,id)) <T,, where Ty - fixed threshold value of

criterion T (I). Warburton in (Warburton, 1987) showed an O(V>ZlogV) algorithm

for solving the RSPP problem for two objectives (with integer and positive values),
where Z is the upper constraint on the value of the second objective (the first
objective is minimized). In chapter 3.3.4.6 we define the RSPP problem as
mathematical programming problem (MOSP_LP4).

3.3.4.6. Types of the MOSP problems defined as mathematical programming
problems
For K=1 we will use the formulation of the MOSP problem as a linear
programming problem as follows:

Cx — min (3.57)
subject to
Bx=d (3.58)
x=0

Here C= [an ]NxA is an objective matrix; B= [sz] is a transition matrix for graph

VXA
G and: bj=1 when the j-th arc starts in the i-th node, b= =1 when the j-th arc ends

in the i-th node, b;=0 otherwise; d= [di]m is a column vector, which may have

three values: di=1 when i=i5, d=-1 when i=i¢; otherwise d=0; x:[lem,

X; € R*U{0}; "min" describes minimum in the vectoral sense (in the sense of RP
relation). Each of the i-th node, i = 1,_V has its equivalent in the V¢ set, each of the
j-tharc, j= 1,A has its equivalent in the Ag set and each c,j cost for the j-th arc has
its equivalent in the value of the arc function f.(v,v’), <v,v'>e A; . For the case of

N=1, we have a classical definition of the shortest path problem as a linear
programming problem (because of the total unimodularity of matrix B and vector
d). Sometimes, we will use the extended, equivalent form of the problem

(3.57)-(3.58):

A -
Zanxj —min, n=1,N
=1

(3.59)
subject to
A
dbx,=d, i=1V
P (3.60)
X; 2 0, j=1A
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The problem of finding a compromise solution with parameter p=1, however
nonlinear in its nature, can be formulated as a linear programming problem. Using
notations from (3.59)-(3.60) the metrics (3.32) can be written as follows:

1 A
1—CTchjxj

where ¢, =F, . Let us accept following notations:

N

2,

n=1

— min (3.61)

— A
Zn =max{0,1—l*2cnjxj}, n=1N (3.62)
Cn ]':1
Zn = max O,—*ch].xj—l , n=1,N (3.63)
c, o
Then for each n=1,N the following conditions are fulfilled:
1< - =
1——= % = Zu + 2 (3.64)
c, o
1< - =
1-—=D ¢, X = 2Zu—2n (3.65)
Cn j:1
En 20, Zn 20, En 'Zn =0 (366)
For this reason we obtain the following linear programming problem (MOSP_LP1):
N =
Zzn +z, — min (3.67)
n=1
subject to
1 A _ = R
1-—=> ¢ =2i—z:, n=1,N
Cn j=1 (3.68)
220, 220, zy-za=0, n=1N (3.69)
and (3.60)

We may omit conditions ZnZn = 0, n=1,N, but it can be shown that it does not
extend the set of optimal solutions. The presented problem can be solved using the
simplex algorithm. But the problem can be of large scale (number of variables
equals N+A, number of boundaries equals N+V) and effectiveness of solving of this
problem (using a simplex or ellipsoidal algorithm) is rather unacceptable.

According to the discussion conducted in chapter 3.3.4.2 and formula (3.44)
the CSy=1 problem can be also defined as follows (MOSP_LP2):
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N 1 A
zc—z%x] — min (3.70)

=1 %y ]:1

=

subject to (3.60).
The CSy=; problem of finding a compromise solution with parameter p=2
(MOSP_NP1):

i(l——z% ]J — min (3.71)

n=1 n j=1
subject to (3.60). Unfortunately, the criterion function causes that the problem is
nonlinear.

The CSp-» problem of finding a compromise solution with parameter p=oo
(MOSP_NP2), known as the max-ordering problem can be defined as follows:

1__2% j

Tl

max
ne{1,..,N}

— min (3.72)

subject to (3.60). The "max" in the criterion function causes that the problem is
nonlinear. However, the problem can be formulated as linear (# — min, subject to:
Zu+zn < u, Vne{l,..,N}, where z,, z, defined in (3.62) and (3.63)).

The method with the metacriterion function of type I (MOSP_LP3) is defined
as follows:

O .
Z chnjx. — min (3.73)

j
n=1 €, j=1

N -
subject to: Zaﬂ =1, «,20, n=1,N and (3.60).

n=1

To define the MOSP problem with the metacriterion function of type II, let us

note that function ?n([) from (3.51) is equivalent to , hence we obtain

A
Z%

=

(MOSP_NP3):
u — min (3.74)
subject to
1- AC; <u, n=1,N (3.75)
2.6,
=1
and (3.60).

The first type of constraint causes that the problem is nonlinear.
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The method with critical values of criteria (MOSP_LP4) known also as the
restricted shortest path problem can be formulated as follows:

A
D c,x; - min (3.76)
j=1
subject to
A
Dex<g, i=LN,i#L (3.77)
=1
and (3.60)

where ¢=(9,,%i 8 )#L describes the threshold values of each of the criteria, and

L denotes the index of the criterion to minimize. Let us note that if any component

of g is not an integer then the constraint x; 20, j=1,A must be replaced by

x,€{0,1}, j=LA.
In Table3.7 we present properties of the MOSP problems formulated as
mathematical programming problems.

Table 3.7. Properties of the MOSP problems formulated as mathematical programming problems

Problem Type of mathematical Number of Number of
programming problem | decision variables constraints

MOSP_LP1 Linear 2N+A V+N
MOSP_LP2 Linear A 1%
MOSP_LP3 Linear A 1%
MOSP_LP4 Linear A V+N-1
MOSP_NP1 Nonlinear A 1%
MOSP_NP2 Nonlinear A 1%
MOSP_NP3 Nonlinear A+1 V+N

3.3.4.7. Example of the GAMS model for the MOSP_LP3 problem

The source code of the the GAMS® model for solving the MOSP_LP3 problem
(the first row in Table 3.9, equation (3.73) and (3.60)) for the G graph from Fig. 3.12
is presented below. We set the following equivalence between notations being
used in the MOSP_LP3 model and in the source code of the GAMS model (notation
x=y describes that x in the GAMS model is equivalent to y in the MOSP_LP3

model): c(nj)= Cj b(i,j) = bi]’, c_opt(n)=c, , alfa(n) = a, x(j) = % di)=d,

% General Algebraic Modelling System (Rosenthal, 2010).
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b('3'",'2")= -1;

b('3'",'4")= -1;

b('3'",'6")= -1;

b('3','5")= 1;

b('3','7") = 1;

b('3','9")= 1;

b('4','3")= -1;

b('4','5")= -1;

b('4','6")= 1;

b('4','10")= 1;

b('5'",'8")= -1;

b('5'",'9")y= 1;

b('5'",'"10")= 1;

Parameters

c_opt (n) optimal value of the n-th criteria function;
c_opt('l")= 6;

c_opt('2'")= 5;

c_opt('3")= 2;

Parameters

alfa (n) weight of the n-th criteria function;
alfa('l")= 1/3;

alfa('2")= 1/3;

alfa('3")= 1/3;

Parameters

d(i) parameter to set source and destination nodes;
* = 1 for source node,

* =—1 for destination node,

* =0 otherwise;

a('1')= 1;
d('2")= 0;
d('3"'")= 0;
d('4')= 0;
d('5")= -1;
Variables
x(73)

z;

Positive wvariable x;

Equations

objective objective function (3.73)

subj (1) condition (3.60);

objective.. z =e= sum((n, j), (alfa(n)/c_opt(n))*c(n,J)*x(3));
subj (i) .. sum(j,x(J)*b (i, J))=e=d(1);

Model mosp_1lp3 /all/ ;

option limrow=16;
*number of rows in output file
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option reslim=10000;
*10000 seconds for calculations;

option iterlim=100000000;
* upper bound on iteration numbers

option lp=Cplex;
* solver Cplex

solve mosp_lp3 using lp minimizing z;
display x.1, z.1;

By solving this model using the GAMS/CPLEX 12.2 solver we obtain:
x(1)=x(8)=1 (values of x variable for remaining parameters are equal 0), and the
value of the objective function equals 1.055 (see also Table 3.9).

3.3.5. Numerical Examples and Analysis

In Fig. 3.12 we present a graph, which will be used as a running example of
defined the MOSP problems with three-dimensional vector of costs (Tarapata,
2007d). Values of all functions are minimized.

In Table 3.8 we present the set of paths from s1=1 to ;=5 for the graph from
Fig. 3.12 and their multidimensional properties. In the last row of the table optimal
costs for each of the objectives are presented (¢ =(6,5,2)). In the last column of

Table 3.8 for each of the path I from s1=1 to #=5 the smallest value of (1+¢&) such

that F(I)SC* is calculated. For example, for pA we have: 1+&=max{7/6, 5/5,

2/2}=7/6. Table 3.9 contains optimal multidimensional paths for the graph from
Fig. 3.12 (s1=1, t1=5) using different types of the defined MOSP problems.

1 8
(1,3,1) 4 2 (62,1)
3,2,1) (23,1
2 9
(3,4,1) (3,2,1)

5 6
3 (241) @21 1
(5,2,1) (2,5,1)

Fig. 3.12. Exemplified graph with multidimensional costs: on top of each arc its number is described
and on the bottom — three-component arc cost
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Table 3.8. Set of paths from s1=1 to #;=5 for the graph from Fig. 3.12 and their multidimensional

properties
Path namel | Path as a sequence of nodes Cost vector F(I) of path 1+e
pA 1-2-5 (7,5,2) 7/6
pB 1235 (7,7,3) 3/2
pC 1-2-3-4-5 (8,14, 4) 14/5
D 135 6, 6,2) 6/5
pE 1325 (12, 8, 3) 12/6
pF 1345 (7,9,3) 9/5
G 1-4-5 (7,7,2) 7/5
pH 1-4-35 (12, 6,3) 12/6
pl 1-4-3-2-5 (17,9, 4) 17/6
Vector of optimal costs: ¢, =6,c, =5,c; =2

Table 3.9. Optimal multidimensional paths for the graph from Fig. 3.12 (s1=1, t1=b)

Problem Optimal path | Cost of path

MF_1, ¢ =1/3 n=13 e MOSP_LP3 pA 1.055

MF_1, ¢, =0.66,0, =0.17,,,=0.17 < MOSP_LP3 pD 1.034

CSp=1 & MOSP_LP2 pA 3.167
RSPP&MOSP_LP4, L=1, g:=1.2¢;,, g5=1.2¢, pD 6.0
RSPP&MOSP_LP4, L=1, g=1.1c,, g=1.1c, pA 7.0

RSPP&MOSP_LP4, L=1, g=C,, g=C; null +infinity

CSy=2 & MOSP_NP1 pA 0.139

CSp-o & MOSP_NP2 pA, pD 0.333

MOSP_NP3 pA u=1/6

In Fig.3.13, Fig.3.14 and Fig. 3.15 we present weighted terrain-based grid
graphs with a dimension of 50x200 nodes (squares) representing the
neighbourhood of Radom, Poland. Each of the graphs has an arc count of A=3,95V,
because only north-east-south-west moves are permitted from a node. Such graphs
represent a model of the battlefield in a computer simulation game (Tarapata,
2003a). For this example, each terrain square has a size of 200x200m, so graphs
represent a piece of terrain with a dimension of 10x40km. Colours represent values
of criteria: c1 for Fig. 3.13 — the light colour of the node (square) describes open
terrain (well passable), the dark colour describes obstacles (forests, lakes, rivers,
buildings): the darkest is the colour of least passable terrain; c: for Fig. 3.14 — the
colour of the node (square) describes ability to camouflage: the darker the colour,
the smaller the ability to camouflage; cs for Fig. 3.15 — values of criterion c3 equals 1
for all nodes. The white colour on all figures describes the optimal path from the
left-top corner to the right-bottom. Let us note that finding the optimal path in
a sense of: c1 gives the fastest path, c2 gives the best "camouflaged" path, c3 gives
the shortest geometric path (with north-east-south-west moves only from a given
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node). Without loss of generality we can assume that functions ci1, c2, c3 are
described on the nodes (squares) instead of arcs (if it is necessary to obtain a graph

with arc functions we can construct a dual graph GT = <VGT, AGT> to the considered
graph G =<VG,AG>, where V., =A. and each arc (a,b)e A, € A, XA, is created
when two arcs 4, b in G have a common node (are simultaneously adjacent with
any node); then in GT functions c1, ¢z, c3 are described on arcs).

In Table 3.10 we present experimental results of average running times (in
seconds) of the modified Dijkstra’s algorithm and the GAMS/CPLEX 12.2 for the
MF_1 problem (a=1/N, i=1,...,N). Graphs with a node count of 1000*x
(x=1,2,...,10) are cut from the graph with 50x200 nodes (Fig.3.13, Fig.3.14,
Fig. 3.15) and have a dimension of 50x(20*x) nodes.

Fig. 3.13. Weighted terrain-based grid graph with a dimension of 50x200 nodes (squares). Colour
represents value of criterion c1: the light colour of the nodes (square) describe open terrain, the dark
colour describes obstacles (forests, lakes, rivers, buildings). The white colour describes the optimal
path from the left-top to the right-bottom corner
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Fig. 3.14. Weighted terrain-based grid graph with a dimension of 50x200 nodes (squares). Colour
represents value of criterion ca: the colour of the node (square) describes the ability to camouflage:
the darker the colour the smaller the ability to camouflage. The white colour describes the optimal

path from the left-top to the right-bottom corner
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Fig. 3.15. Weighted terrain-based grid graph with a dimension of 50x200 nodes (squares). All

weights are identical (the c3 criterion value equals 1). The white colour describes the optimal path
from the left-top to the right-bottom corner

We can see a clear advantage of the modified Dijkstra’s algorithm with
relation to CPLEX 12.2 solving the MF_1 problem as a linear programming
problem MOSP_LP3: using the modified Dijkstra’s algorithm with its fast
implementations is time-effective. It is especially visible in Fig.3.16 where we
present a decimal logarithm of the average running times (in milliseconds) of these
two algorithms.

Table 3.10. Average running times (in seconds) of the modified Dijkstra’s algorithm and the
GAMS/CPLEX 12.2 solver for the MF_1 problem (¢=1/N, i=1,...,N)

Count of nodes Modified Dijkstra’s MF_1 solved as MOSP_LP3
(V) alg.

N=1 | N=2 | N=3 | N=1 N=2 N=3
1000 0.03 0.08 0.11 0.76 2.31 4.39
2000 0.10 0.29 0.38 2.82 8.81 12.40
3000 0.25 0.71 0.96 6.52 21.20 29.14
4 000 0.37 1.10 147 16.40 52.55 72.30
5000 0.59 1.74 2.33 30.41 98.12 136.22
6 000 0.86 2.55 3.42 50.79 161.94 225.67
7 000 1.16 3.44 4.59 74.61 238.27 333.80
8 000 1.55 4.57 6.12 109.24 | 348.13 483.76
9000 1.96 5.82 777 | 134.78 | 43247 620.94
10 000 2.43 7.24 9.66 179.61 | 564.42 790.97

Fig.3.17 presents dependencies between the average running times (in
milliseconds) of the GAMS/CPLEX 12.2 solver and the beta coefficient for solving
the MOSP_LP4 problem for two graphs with V=1 000 (50x20) and V=2 000 (50x40)
nodes. In the MOSP_LP4 problem we minimize the c; criterion subject to upper

constraints (g2 and g3) on values of criteria c2 and c3 as follows: g, =beta-c, and
(g3=infinity, g, =beta-c;), where ¢, =6 964 and c, =68 for V=1 000; c, =6 061 and
c, =88 for V=2 000.
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Fig. 3.16. Decimal logarithm of average running times (in milliseconds) of the modified Dijkstra’s
algorithm (MF_1 problem<~MDijk) and the GAMS/CPLEX 12.2 (MOSP_LP3 problemLP)
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Fig. 3.17. Decimal logarithm of average running times (in milliseconds) of the GAMS/CPLEX 12.2
solver solving the MOSP_LP4 problem for two graphs with V=1 000 and V=2 000 nodes,

g, =beta-c, and (g, = infinity , g, = beta-c;)

In Fig. 3.18 we present dependencies between values of the objective function
and beta coefficient for the MOSP_LP4 problem. Let us note that, generally, the
greater the value of beta the smaller running time of the model in the
GAMS/CPLEX 12.2 solver (and the smaller value of the objective functions,
Fig. 3.18), but the functions from Fig. 3.17 are not monotonic. The values of the
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running times for the MOSP_LP4 problem are few times greater than for the
MOSP_LP3 problem solved using the GAMS/CPLEX 12.2 solver (compare
Fig.3.17 and Fig.3.16). For example, the running time for V=2000 is about
105/10%8 times greater than for solving the MOSP_LP3 problem. These results are
clear: the smaller restrictions on criteria c2 and c3 (that means: the greater value of
beta) the smaller running time. Moreover, the greater value of the running time

results from the fact that g, =beta-c, is not an integer (except for beta=1.25 and

beta=1.5 for c,=6964, V=1000) and MOSP_LP4 (as a linear programming

problem) becomes harder to solve the binary programming problem. For the
beta>1.35 value of the objective function (based on c1) does not change, because it
achieves an optimal value (¢, =605 for V=1 000, ¢, =713 for V=2 000).
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\ —e V=2000, g,
2000 —A— V=2000, 9,,95
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Fig. 3.18. Values of objective functions for the MOSP_LP4 problem for two graphs with V=1 000 and
V=2000 nodes, g, =beta-c, and (g, = infinity , ¢, = beta - c;)

3.4. Disjoint Paths Planning (DP)

3.4.1. Description of the Problem

The disjoint paths (DP) problem is a well-known network optimization
problem. The problem relies on such determining paths for a few objects that no
common part of paths for objects (arcs or nodes belonging to paths) are accepted.
There are two classification categories of the problem: (DP1) from the point of view
of paths disjointness type; (DP2) from the point of view of source and destination
type. In the (DP1) category the problem is divided into two subproblems: (DP1.1)
arc-disjoint paths (no common arcs are accepted) and (DP1.2) node-disjoint paths
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(no common nodes are accepted; in selected cases, common source and destination
nodes can be accepted). It is easy to note that the following sentence is true: if two
(or more) paths are node-disjoint then they are arc-disjoint as well. Reverse relation
can not be true. In the (DP2) category the problem is divided into a few
subproblems: (DP2.1) from a single source to a single destination; (DP2.2) from
a single source to a set of destination ones; (DP2.3) from a set of sources to
a single destination; (DP2.4) from a set of sources to a set of destinations; (DP2.5)
from a vector of sources to a vector of destinations. What is the difference between

these models? When we have K-component vectors of sources (s:<sl,sz,..., sK>)

and destinations (t = <t1, ty, s tK>) then we must find disjoint paths from s1 to #; and

from s to f2, and from s3 to t3, etc., hence the K disjoint paths between K pairs of
nodes. When we have K-element sets of sources and destinations we must find K
disjoint paths between any of the sources and destinations. In general, the case
with the vector of sources and/or destinations is more complicated to solve then
with a set of them.

The disjoint paths problem may be related to the following practical
applications: VLSI layout designing (Aggarwal et al, 2000), routing in
telecommunication networks (in particular: optical) (Aggarwal et al., 2000; Ahuja et
al., 1993; Andersen et al., 2004; Bhandari, 1999; Jongh et al., 1999; Li et al., 1992;
Perl & Shiloach; 1978, etc.), manoeuvre (transport) planning of military
detachments (or vehicles) (Tarapata, 1998; 2008e; 2009a; Tarapata & Wroclawski,
2010g; 2011d), tasks scheduling (trasmission) in a parallel or a distributed
computing system (Tarapata, 1999a; 2000e), couriers problem (Tarapata, 1998). For
example, in military applications, to increase redeployment safety, it is often
required that paths for moved objects (convoys) should be independent (disjoint).
These disjoint paths condition results from the fact, that during convoy
redeployment the potential opponent may try to destroy structure elements of the
network (for example, crossings (node of the network) or parts of the road, bridges
(arcs of the network)) as well as convoys being redeployed to make impossible the
achievement destinations and intended goals by the convoys.

It is known (Even et al.,, 1976; Perl & Shiloach; 1978) that the optimization
problem for finding K>1 shortest disjoint paths between K pairs of distinct nodes
(DP2.5 problem) is NP-hard (even for K=2). The problem of finding two or more of
disjoint paths between specified pairs of terminals (network nodes) has been well
studied. The first significant result in this subject has been presented in (Suurballe,
1974). Presented in this paper is the algorithm for the single source - single
destination case having a complexity of O(Aloga+amn)V), where V - number of
network nodes, A - number of network arcs. This procedure solved the problem as
a special case of a minimum-cost network flow problem using two efficient
implementations of the Dijkstra’s single-source shortest path algorithm. An



86 3. Models and Algorithms for Movement Planning

efficient algorithm to solve the problem for the single-source all destinations
node-disjoint paths was given in (Suurballe & Tarjan, 1984). In this study, the
disjoint pairs of paths from the source node to all the other nodes in the network
are determined using a single Dijkstra-like calculation to derive an algorithm
having a time complexity of O(Alogu+amv)V). Perl and Shiloach (Perl & Shiloach;
1978) studied the complexity of finding two disjoint paths between two different
sources and two different destinations in directed acyclic graphs (DAGs). They
proposed an algorithm, which is easily generalized in finding the shortest pair of
paths (measured by the total path length) or finding tuples of d disjoint paths
between distinct specified terminals; in the latter case the running time would
become O(AV#1). The author of the paper (Eppstein, 1995) considered the problem
of finding pairs of node-disjoint paths in DAGs, either connecting two given nodes
to a common ancestor, or connecting two given pairs of terminals. He showed how
to find the K pairs with the shortest combined length in a time of O(AV+K). He also
showed how to count all such pairs of paths in O(AV) arithmetic operations. These
results can be extended to finding or counting tuples of d disjoint paths in a time of
OAV#1+K) or O(AV#1). Authors of the paper (Li et al, 1990) give
a pseudo-polynomial algorithm for an optimization version of the two-path
problem, in which the length of the longer path must be minimized. In the other
paper of these authors (Li et al., 1992) the difficult bifurcated routing problem was
described. They solved the problem when each path corresponds to the routing of
a different commodity so that each arc is endowed with a cost depending on the
path to which it belongs. In the paper (Jongh et al., 1999) the problem of finding
two node disjoint paths with minimum total cost in the network was studied, in
which a cost is associated with each arc or edge and a transition cost is associated
with each node. This last cost is related to the presence of two technologies on the
network and is incurred only when a flow enters and leaves the corresponding
node or arcs of different types. A good study for a very important problem of
finding disjoint paths in planar graphs was presented in paper
(Schrijver & Seymour, 1992). A very interesting approach to the time-dependent
shortest pair of disjoint paths problem was discussed in (Sherali et al., 1998). In
(Tarapata, 1997; 1998; 1999a; 2000e) a new approach to the K disjoint path problem
was proposed: it is based on building, starting from the initial network, the
so-called K-nodes (K-dimensional vectors of network nodes), K-arcs and "virtual"
K-network, and finding in such a K-network the shortest K-path (K-dimensional
vector of simple paths) using the original Dijkstra-like algorithm. The specific
problem has been considered in the papers. It deals with the parallel or distributed
computing system, in which we want to send (or process), in generality, K (K>1)
tasks from the K¢ (Ks=1 or K*=K) computer-nodes (local servers) to the K¢ (K?=1 or
K4=K) destination ones through disjoint paths to minimize sending (or processing)
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the time of all tasks and simultaneously to ensure task sending (or processing) on
the most reliable paths (when the elements of the network structure are unreliable).
One of the methods being proposed to solve the problem is finding the best paths
for K objects iteratively using methods for finding the m-th (1st, 2nd, etc.) best path
for each of the K objects (Eppstein, 1999) and visiting specified nodes (Ibaraki,
1973). Parallelization of the method is presented in (Tarapata, 2000a).

3.4.2. Definition of the Problem

3.4.2.1. Formulation of the node-disjoint paths visiting specified nodes problem

The mesh graph, which is the basic data for the problem can model, for
example, regular grid of terrain squares used to plan off-road (cross-country)
movement (see Fig.2.3b). This grid divides the terrain space into squares of equal
size. Each square is homogeneous from the point of view of terrain characteristics
(dimensions, degree of slowing down the velocity, ability to camouflage, degree of
visibility, etc.). The structure of such a terrain can be represented by a "mesh"

digraph G = <VG,AG>, Ve — set of graph nodes (V¢ describes the centre of terrain

squares), Ag - set of graph arcs, AccVexVc, A=A=G. Arcs are allowed between
geographically adjacent squares only (see Fig.2.3b).
To define the considered problem let us accept the following descriptions:

s=<sl,sz,...,sK> — vector of source nodes, t=<t1,t2,..., tK> — vector of destination

nodes, A =[a,,],. .. . — matrix of source and destination nodes via indirect nodes

for each object (a path for each object is divided into M=N+1 parts (segments) from
one node to other indirect nodes, N — number of indirect nodes): aix=1 if the i-th
node is the n-th source node for the k-th object, aim=-1 if the i-th node is the n-th
destination node for the k-th object; aix=0 otherwise; additionally, the following
conditions must be satisfied: aiix=1<i=si (it means that node sy must be the source
node of the first segment of the path for the k-th object), ainx=-1<i=i1(k) (the first
indirect node i1(k) for the k-th object is the destination node for the first segment of
the path for this object), aimk=1< i=in(k) (the last indirect node in(k) for the k-th
object is the source node for the last segment of the path for this object),
aivk=-1<1=ty, (node fx is the destination node of the last segment of the path for the
k-th object), ne{lv @, =—1=a,,,,, =1 (the destination node of the n-th path

segment for the k-th object is, simultaneously, the source node of (n+1)-st segment
for this path); H=[h, ] — matrix of nodes (generating subgraphs of G), which are

allowed to be taken into account during paths determination for each object: hix=1
if the i-th node can be taken into account during paths determining for the k-th

object, hi=0 - otherwise (in particular: i=si=>hi=1, i=t,=hi=1); OUT =[outij]v e
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binary crossing matrix of arcs starting in nodes of G: out;=1 if the j-th arc starts in

the i-th node, out;=0 - otherwise; INz[inij]v e binary crossing matrix of arcs

ending in nodes of G: in;=1 if the j-th arc ends in the i-th node, in;=0 — otherwise;

D= [d ]l , ~ vector of arcs’ cost; X = [x jnk] — decision variables matrix, xju=1
X

AxMxK
if the j-th arc of G belongs to the n-th segment of the path for the k-th object,
otherwise xjx=0 .

We can formulate two problems (NDRP-Sum and NDRP-Max, both are
a modification of the DP2.5 problem), which differ in the objective function. The
tirst one (NDRP-Sum) minimizes the total cost of all (K) disjoint paths visiting
specified nodes in the restricted area and the second one (NDRP-Max) minimizes
the maximal cost of any of the K disjoint paths.
The optimization NDRP-Sum problem of determining the K shortest node-disjoint
paths via some indirect nodes in the restricted area can be defined as follows:

A M .
Zzzd;‘xmk — min (3.78)
j=1 n=1 k=1
with constraints:
A
le(out,.]. —ing)x, =a,,, i=1V,n=1,M, k=1K (3.79)
=
A M
D> > outyx,, <1, i=1,V (3.80)
j=1 n=1 k=1

A M K

33N inx,, <1, i=1,V (3.81)
j=1 n=1 k=1

A M

Z;leoutﬁx STy, i=1,V, k=1K (3.82)
J=ln=

A M

S inx, <hy, i=1,V, k=1,K (3.83)
j=1 n=1

X, 20, i=1,A, n=1,M, k=1K (3.84)

The objective function (3.78) describes the total cost of K disjoint paths, which is
minimized. The first constraint (3.79) assures that for each node (excluding the
source and destination nodes), for each object and for each path segment, the sum
of arcs starting from the node and the sum of arcs ending at the node, which are
selected to the path is the same (further constraints assure that this value is <1). For
the source node this difference is equal 1 (only the single path segment can start at
the source node) and for the destination node -1 (only the single path segment can
end at the destination node). Constraints (3.80) and (3.81) supplement constraint
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(3.79) to assure that for each node only, at least one arc starting and ending at that
node can belong to any path. Constraints (3.82) and (3.83) guarantee that only
allowed nodes are on the path for the k-th object (definition of the restricted area).
Additionally, it can be observed that the matrix of constraint coefficients (built on
the basis of the left sides of the constraints (3.79)-(3.83)) is totally unimodular
(proof of this property is presented in (Tarapata, 2007a)) and aiu, hi (right sides)
are integer, hence we can obtain the continuous linear programming problem
(instead of the binary linear programming) and constraint (3.84) (instead xjuk
€{0,1}). In the presented optimization problem we have the AMK decision
variables and V(MK+K+2) constraints (excluding (3.84)). Let us note that we could

use transition matrix B= [bJ of graph G (defined in chapter 3.3.4.6) instead of

the semi-transition matrices OUT and IN. In such a case we could have the
following constraints:

(3.79) —>Zb,] ik =y, (3.80) => i

=1

A M K
(3.82)=> Y33 b,x,, <h, , (3.83) =>
j=1

n=1 k=1

A M K
by <1, (3.81) >Zzzbu jue 2L

j=1 n=1 k=1
K
Zbu Jrk 2 h

k=1

—.

M 1M
M= zMw

.
1l

Uy
I

—_

Matrices OUT and IN have been used because of computational reasons without
increasing computational complexity of the problem.

The NDRP-Max problem can be formulated similarly to the NDRP-Sum
problem, excluding the objective function, which has a form:

Jmax ZZd]x]nk — min (3.85)

j=1 n=1

and with constraints (3.79)-(3.84).
Unfortunately, the function (3.85) is nonlinear and the NDRP-Max problem is
nonlinear. We can use the equivalent formulation of the problem to avoid its

nonlinearity:
u — min (3.86)
with constraints:
A M
ZZd].xjnk <u, k=1K (3.87)

j=1 n=1

and (3.79)-(3.84).
Formulation (3.86)-(3.87) of the NDRP-Max problem makes it a linear
programming problem.



90 3. Models and Algorithms for Movement Planning

3.4.2.2. Example of the GAMS model for the NDRP-Sum problem

Below we present the GAMS model for the K=2 NDRP-Sum problem from
s=(1,2) to t=(7,8) in graph G from Fig. 3.19.
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Fig. 3.19. Graph G for the K=2 disjoint paths GAMS model: on top of each arc its number is
described and on the bottom — arc cost

We set the following equivalence between notations being used in model of
the NDRP-Sum problem (defined by (3.78)-(3.84)) and in the source code of the
GAMS model (notation x=y describes that x in the GAMS model is equivalent to y
in the NDRP-Sum model): d()=d;, out(ij)=out;, in(ij)=in,;, a(ink)=aq,

ink >

x(jnk) = Xk

i set of nodes of graph G
/1, 2, 3, 4, 5, 6, 7, 8/

J set of arcs of graph G
/1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22/

k set of objects (paths)
/l/ 2/

n set of indirect nodes
/l/ 2/

Parameters

d(3) arcs cost vector;
a('i")=1 ;

a(r2t)= 1;

da('3")= 3 ;

d('4')= 3 ;

da('s')= 4 ;

d('e')= 4 ;
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a('7')= 2 ;
da('s')= 2 ;
a('9")=1;
d('10")= 1;
d('i1")y=1 ;
d('i12")y=1 ;
d('13")= 6 ;
d('14")= 6 ;
d('15")= 4 ;
d('le")= 4 ;
d('17")= 3 ;
d('18")= 3 ;
da('19")y= 2 ;
d('20")= 2;
da('21")= 1;
d('22")= 1;
Parameters
out (i, J) binary crossing matrix of arcs starting in nodes of G;
* 1 - if the j-th arc starts in the i-th node
* 0 - otherwise;
out ('1','1")=1 ;
out ('1','3")=1 ;
out ('2','5")y=1 ;
out ('2','7")=1 ;
out ('3','2")y=1 ;
out ('3','10")= 1 ;
out ('3','13")=1 ;
out ('4','9")=1 ;
out ('4','15")= 1 ;
out ('4','17")=1 ;
out ('4','19")= 1 ;
out ('4','12")=1 ;
out ('4','6")=1 ;
out ('4','4")=1 ;
out ('5','9")=1 ;
out ('5','11")=1 ;
out ('5','21")= 1 ;
out ('6','14")=1 ;
out ('6','l6")= 1 ;
out ('7','18")= 1 ;
out ('8','20")= 1 ;
out ('8','22")= 1 ;
Parameters
in (i, J) binary crossing matrix of arcs ending in nodes of G;
* 1 - i1if the j-th arc ends in the i-th node
* 0 — otherwise;
in('1','2")=1 ;
in('1','4")=1 ;
in('2','6")=1 ;
in('2','8")= 1 ;
in('3','1")=1 ;
in('3','9")= 1 ;
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in('3','14")= 1 ;

in('4','3")= 1 ;

in('4','5")= 1 ;

in('4','11")= 1 ;

in('4','20")= 1 ;

in('4','18")= 1 ;

in('4','16")= 1 ;

in('4','10")= 1 ;

in('s5','7")y=1 ;

in('5','12")= 1 ;

in('5','22")= 1 ;

in('6','13")= 1 ;

in('6','15")= 1 ;

in('7','17")= 1 ;

in('8','19")= 1 ;

in('8','21")= 1 ;

Parameters

a(i,n, k) source and destination nodes via indirect nodes;

*a(i,n,k)=1
k-th object,

a(i,n,k)=-1 41f the i-th node is the n-th
the k-th object,
*a(i,n, k)=0 otherwise;
a(lll,lll,lll)zl;
a(l7l,lll,lll):_l;
a('2','1','2'):1;
a(’87,717,72’):_1;
Variables
x(j,n, k)
Zy

Positive variable x;

Equations

cost total paths cost
constrl (i, n, k) eq. (3.79)
constr2 (i) eq. (3.80)
constr3 (1) eq. (3.81);

(eq.

(

)
)

cost.. z =e= sum((j,n, k), d(3)*x(j,n,k));
constrl (i,n,k).. sum(j, (out (i, J)-in(i,J
constr2 (i)..sum((j,n,k), out(i,]j)*x(j,n,
constr3 (i)..sum((j,n,k), in(i, J)*x(J,n,k))

Model DisjPathsSum /all/;

option limrow=16;
*number of rows in output file

option reslim=10000;
*10000 seconds for calculations;

option iterlim=100000000;

)
k
)

if the i-th node is the n-th source node for the

destination node for

3.78))

*

)

X
1=1;
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* upper bound on iteration numbers

option lp=Cplex;
* solver Cplex

solve DisjPathsSum using lp minimizing z;
display x.1, z.1;

By solving this model using the GAMS/CPLEX 12.2 solver we obtain:

- 154 VARIABLE x.L

1 2
1.1 1.000
7.1 1.000
10.1 1.000
17.1 1.000
21.1 1.000
-———= 154 VARIABLE z.L = 10.000

It means that for the 1st object we have obtained the path (as a sequence of arcs):
1-10-17 and for the 2nd one: 7-21. Total cost of this K=2 node-disjoint paths =10.

3.4.2.3. Example of the GAMS model for the NDRP-Max problem

Below we present the GAMS model for the K=2 NDRP-Max problem from
s=(1,2) to t=(7,8) in graph G from Fig.3.19. We set the following equivalence
between notations being used in the model of the NDRP-Max problem (defined by
(3.78)-(3.84) and (3.86), (3.87)) and in the source code of the GAMS model (notation
x=y describes that x in the GAMS model is equivalent to y in the NDRP-Max

model): d()= df, out(ij) = out; in(ij) = i”,-j, a(ink)=a,, X(n k) = 2,

Sets
i set of nodes of graph G
/1, 2, 3, 4, 5, 6, 7, 8/

7 set of arcs of graph G
/1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22/

k set of objects (paths)
/1, 2/

n set of indirect nodes
/1, 2/

Parameters

d(3) arcs cost vector;
d('1n)=1 ;

(2= 1;

da('3')= 3 ;
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d('4')= 3 ;
a('s')= 4 ;
da('e')= 4 ;
a('7')= 2 ;
a('s')= 2 ;
a('9n)=1;
d('10'")= 1;
d('11'")= 1 ;
d('i2")=1 ;
d('13")= 6 ;
d('14')= 6 ;
d('15")= 4 ;
d('le6')= 4 ;
d('17")= 3 ;
d('18'")= 3 ;
d('19")= 2 ;
d('20")= 2;
d('21'")= 1;
d('22')= 1;
Parameters
out (i, J) binary crossing matrix of arcs starting in nodes of G;
* 1 - 1if the j-th arc starts in the i-th node
* 0 — otherwise;
out ('1','1")=1 ;
out ('1','3")=1 ;
out ('2','5")y=1 ;
out ('2','7")=1 ;
out ('3','2")=1 ;
out ('3','10")= 1 ;
out ('3','13")= 1 ;
out ('4','9")= 1 ;
out ('4','15")= 1 ;
out ('4','17")=1 ;
out ('4','19")= 1 ;
out ('4','12")=1 ;
out ('4','6")=1 ;
out ('4','4")=1 ;
out ('5','9")=1 ;
out ('5','11")=1 ;
out ('5','21")=1 ;
out ('6','14")= 1 ;
out ('6','16")= 1 ;
out ('7','18")= 1 ;
out ('8','20")= 1 ;
out ('8','22")=1 ;
Parameters
in (i, 3j) binary crossing matrix of arcs ending in nodes of G;
* 1 - i1if the j-th arc ends in the i-th node
* 0 — otherwise;
in('1','2")= 1 ;
in('1','4")= 1 ;
in('2','6")= 1 ;
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in('2','8")=1 ;
in('3','1")=1 ;
in('3','9")=1 ;
in('3','14")= 1 ;
in('4','3")=1 ;
in('4','5")= 1 ;
in('4','11")= 1 ;
in('4','20")= 1 ;
in('4','18")= 1 ;
in('4','16")= 1 ;
in('4','10")= 1 ;
in('5','7")=1 ;
in('5','12")= 1 ;
in('5','22")= 1 ;
in('6','13")= 1 ;
in('e','15")= 1 ;
in('7','17")=1 ;
in('8','19")= 1 ;
in('8','21")= 1 ;
Parameters

a(i,n, k) source and destination nodes via indirect nodes;

*a(i,n,k)=1 if the i-th node is the n-th source node for the
k-th object,

*a(i,n,k)=-1 if the i-th node is the n-th destination node for
the k-th object,

*a(i,n, k)=0 otherwise;

a(’l’,’l’ ’l’):l;
a(’7’,’l’,’l’):_1,
a(121,111,121)=l;
a(181,111,121)=_1;
Variables

X (j,n, k)

Zy

Positive variable x, u;

Equations

cost maximal paths cost (eq. (3.86))
constrl (i, n, k) eq. (3.79)

constr2 (i) eq. ( )

constr3 (1) eq. (3.81)

constri (k) eq. ( )

cost.. z =e= u;

constrl (i,n,k).. sum(j, (out(i,j)-in(i, J))*x(j,n,k))=e=a(i,n,k);
constr2 (i)..sum((j,n,k), out(i,J)*x(j,n,k))=1=1;
constr3 (i)..sum((j,n,k), in(i,j)*x(j,n,k)):lzl,
constr4 (k) ..sum((j,n), d(j)*x(j,n,k))=1=u;

Model DisjPathsMax /all/;

option limrow=16;
*number of rows in output file
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option reslim=10000;
*10000 seconds for calculations;

option iterlim=100000000;
* upper bound on iteration numbers

option lp=Cplex;
* solver Cplex

solve DisjPathsMax using lp minimizing z;
display x.1, z.1;

Solving this model using the GAMS/CPLEX 12.2 solver we obtain:
- 156 VARIABLE x.L

1 2
1.1 1.000
7 .1 1.000
10.1 1.000
17.1 1.000
21.1 1.000
- 156 VARIABLE z.L = 5.000

It means that for the 1st object we have obtained path (as a sequence of arcs):
1-10-17 and for the 2nd one: 7-21. Maximal cost of any of K=2 node-disjoint paths is
equal 5 and is minimal among other K=2 node-disjoint paths in the graph G.

3.4.3. Description of Algorithms for Solving DP Problems

3.4.3.1. Subgraphs-generating node-disjoint paths algorithm (SGDP)

For solving the NDRP-Sum and NDRP-Max problems we propose the
subgraphs generating-based algorithm (SGDP), (Tarapata, 2001;
Tarapata & Wroclawski, 2010g). The algorithm searches for a bundle of
node-disjoint paths for the K objects, each path consists of 2 or more indirect nodes
(including the source and destination). The idea of the algorithm is to generate
subgraphs (see Fig. 3.20) in the network of terrain squares (for each moved object
we generate a separate subgraph) and afterwards, in each of the subgraphs the
Dijkstra’s shortest path algorithm is run. Each of these subgraphs is created as
follows. We link nodes: source and destination for the given object (if we have, for
example, 4 indirect nodes we set the following pairs source-destination: 1-2, 2-3, 3-
4) and afterwards we "mark" the right and left from the line linking these node
stripes with a width of 0,5swx, where swi describes the width of the stripe, in which

the object should move. Nodes of graph G = <VG,AG> , which centre coordinates are

located at this stripe generate the subgraph. It means that the PG subgraph for the
k-th object is defined as follows:

PG, =(V, Ag) (3.88)
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sw
ve Vg ix(s,)+tang, - (y(0) —y(s,)) ————<x(v) <
3 cos g,
V., = (3.89)

sw,

<x(s,)+tang, (y(0) - y(s,)) +

CoS g,

where Vi — set of subgraph nodes for the k-th object, s, denotes the source node

for the k-th object, and x(v), y(v) - coordinates of the v-th node; Ack — the set of the

subgraph’s arcs, A, ={(v,0')e Vi, xV;, :(v,0')e A;}.

L] =

' (

Fig. 3.20. The idea of "cutting" the subgraphs (in the mesh graph) into stripes with a width of swy for
two moved objects with no indirect nodes

It is possible to exclude some arcs during paths searching by using the
passability threshold parameter, which is introduced to reject each arc with cost
greater than the given parameter value. Having the subgraph generated for each
object we can determine the shortest path for each one in the network based on this
subgraph using a few searching strategies. Three strategies are being used to
generate  the order of objects, for which we find paths:
stripeOrderStrategies={Ascending, Descending, Random}. The first two strategies are
based on order of requests: Ascending — order is the same as in the given paths to
tind; Descending — the order is reversed. In Random the strategy generated order is
randomized with a uniform distribution. By searching with a nondeterministic
strategy, Random allows the algorithm to try the subset of K! possible orders, where
K is the number of objects. The number of examined orders is restricted by stop
conditions defined in stopStrategiesSets (see further).
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The pseudo code of the SGDP algorithm is as follows:
Input data (see chapter 3.42.1): K, G=(V,,A;), A=[a,,] — matrix of source

VxMxK
and destination nodes via indirect nodes for each object (generating set of path
segments PS(k) for the k-th object, number of path segments for each object
is equal M)

0) Save initial graph G state
1) WHILE (none of the stop conditions is fulfilled) DO
2) Generate stripe order using stripeOrderStrategy;
3) IF no unchecked stripe order remains —-> THEN EXIT; END IF;
4a) IF searching mode equals SameWidth THEN
5a) WHILE (none of the stop conditions is fulfilled) DO
6a) Generate width of stripes using
widthOfStripeGenerationStrateqgy;
7a) IF no unchecked width remains THEN
Restore initial graph G state and go to 5a);
END IF;
8a) FOR each path k among K objects to find DO
9a) FOR each segment in PS (k)
10a) Search path for segment in G;
END FOR;
11a) IF path was found THEN
save path for k object and remove used nodes and
arcs from graph G;
END IF;
END FOR;
12a) IF for all objects paths were found THEN
save feasible solution;
END IF;
END WHILE;
END IF;
4b) IF searching mode equals VariousWidth THEN
5b) WHILE (none of the stop conditions is fulfilled) DO
6b) FOR each path k among K objects DO
Tb) Generate width of stripes for k object using
widthOfStripeGenerationStrateqgy
8b) IF no unchecked width remains THEN
Restore initial graph G state and go to 5b);
END IF;
9b) FOR each segment in PS(k) DO
10b) Search path for segment in G;
END FOR;
11b) IF path was found THEN
save path for k object and remove used nodes and arcs
from graph G
ELSE restore initial graph G state
END IF;
END FOR;
12b) IF for all objects have found paths
save feasible solution and restore initial graph G state
END IF;
END WHILE;
END IF;

END WHILE;
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There are two modes of path searching: SameWidth — all stripes must have the
same width, VariousWidth — each stripe may have a different width.

Two different strategies for generating the width of stripes are implemented:

widthOfStripeGenerationStrategy={Constant, Random},
where Constant — width of the stripe is given and never changed; Random - width
of thee stripe is randomized with a uniform distribution. Random strategy
implementation generates a new width for the stripe with respect to the previous
generated width, so that only greater values are allowed. Minimal width
increasing is 0.5 unit (one unit = distance between two neighbouring nodes
(squares)).

Additionally, we used four different stop strategies, which could be used in
any combination:

stopStrategies={MaxlIterationsNumber, MaxFeasibleSolutionsFound,

NextSolutionlsBetter, TimeLimit}.

In the MaxlIterationNumber strategy the algorithm ends when the maximum
iteration number is reached, where a single iteration is the one searched for with
a fixed order and a width of the stripes. With the MaxFeasibleSolutionsFound
strategy the algorithm ends, when a specific number of the feasible (acceptable)
solutions is found; NextSolutionlsBetter stop strategy ends, when the next feasible
solution is no better than the previous one, plus there is a specific epsilon value.
The last strategy, TimeLimit, stops the algorithm when the execution time reaches
the specified time limit.

We can save the found paths during previous iterations or not for the objects
(PathMemory={true, false}): if the next iteration uses the same stripe width as for the
previously found path we can use it to decrease computational time of the
iteration.

Let us analyse the computation complexity of the SGDP algorithm.
Generating K subgraphs for each source-destination pairs in each path segment is
an operation, which complexity is O(MKV). Determining the shortest path in each
subgraph has a complexity of O(A logV) using the Dijkstra’s algorithm with binary
heaps; since we do it MK times (M path segments for each of K objects) we have
O(MKAlogV). The number of possible combinations of paths determining the
order is equal to the number of permutation among K elements, that is K!. If we
check it for each possible action stripe width (let the number of the possible action
stripe width for each object be equal Q) then it can be done, in the worst case, QXK!
times. Since the complexity of the SGDP algorithm is O(QXK!MKA logV). The
estimation of O(QXK!MKA logV) of the SGDP complexity is only theoretical (when
all stop conditions: MaxlIterationsNumber, MaxFeasibleSolutionsFound,
NextSolutionlsBetter, TimeLimit would have maximum values). In practice, time
complexity of the SGDP is estimated by the function O(WMKA logV), where
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W=MaxlIterationsNumber and we never take into account all QKK! possibilities of
determining paths, because of using techniques to avoid checking all of them:
randomization, different stop conditions, saving paths found earlier, etc.
Experimental results show that in an average case the SGDP runs in polynomial
time (see Fig. 3.24, Table 3.11: minCT_ SGDP, maxCT_ SGDP, avgCT_ SGDP).

Let us notice that the considered algorithm superbly fits the parallel
computations by using, for example, K processors (each of the processors generates
a subgraph and determines the shortest path in this subgraph). In such a case we
accelerate computations about K times.

3.4.3.2. Minimal cost flow problem-based algorithms

In the paper (Tarapata, 2008e) it has been shown how to use modifications of
the Busacker-Gowen minimal-cost flow algorithm (Busacker & Gowen, 1961) to
solve the node-disjoint case of the problems: DP2.1, DP2.2, DP2.3, DP2.4 in some
military applications.

The problem of finding an acceptable solution of K node-disjoint paths in the
S= <G = <VG,AG>,C> network (see Fig. 3.21a) from K to K; subset of nodes is based

on the S* temporary network (see Fig. 3.21b) and the maximal flow algorithm. We
use the well-known conclusion from the Ford-Fulkerson theorem concerning
maximal flow in network S from s (source) to ¢ (target) (Wilson, 1998, pp.172): "If
the capacity value of each arc in the network S is an integer, then the capacity cij of the arc
(i,j) describes the number of arcs linking i and j. The value of the maximal flow in such
a network describes the number of all arc-disjoint paths from s to t". Since we would like
to find node-disjoint paths (instead of arc-disjoint) we must modify the S network
to S”. The temporary network S*is constructed as follows:

$"=(G'c) (3.90)

where G = <V*,A*>, V' =V'uV'u{s,t}, c:V' xV' =N - capacity function,

ci=c(i,j) — capacity function value for arc (i,j). Graph G" is constructed as follows:
each node v of graph G is replaced by two nodes (see Fig. 3.21b): v' (belonging to
V' set) and v" (belonging to V" set), next we link v' and v" by an arc and set
capacity of this arc equal to 1. All of the arcs, which end in the v node in graph G
will end in ' node in graph G, all of the arcs which start in the v node in G will
start from v" in G". Each of these arcs in G* will have the same capacity as in G.
Moreover, two nodes (s and ) are added to the set of nodes in G: we link node s
with each of the nodes belonging to the K set and each of the nodes belonging to
K: with node t. Each of these arcs has the capacity value set to 1.

The problem of finding the K node-disjoint paths in network S* is based on
the maximal flow problem definition. Flow f in network S" is a function, which set
for each arc (i,j) in S" such a nonnegative value f;; that:
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1. for each arc (i,j) in S” the following formula is fulfilled:

0< f; <c; (3.91)
2. for source node s in S” the following formula is fulfilled:
eV’ eV’

Value FV is called the flow value.
3. for target node t in S” the following formula is fulfilled:

D fi= 2 fi=-FV (3.93)

eV’ eV’
4. for eachnode je V' /{s,t}:
Zfﬂ - qu =0 (3.94)
ieV eV
Maximal flow problem is defined as follows: for a given S’ s, t to find [f;]*

which satisfy (3.91)-(3.94) and

FV([£,])= T FV([£;]) (3.95)

where SF(s,t) - set of all possible flows in S* from s to .
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Fig. 3.21. (a) Network S with values of arc capacity c;; (b) Network S” related to S with flow values
[fi]" after realization of two iterations of maximal flow algorithm (FV=2), K;={1,2, 3}, K;={6,7}

If, after solving the problem, F([f;]")<K then in §" (and in consequence in S) K
node-disjoint paths from Ks to K: does not exist. Otherwise, K node-disjoint paths
from K; to K exist and we can read them after the last step of the maximal flow
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algorithm as follows: we K times start from s and choice arcs (i,j) with f;=1 till we
achieve t. These alternate sequences of nodes and arcs indicate the k-th disjoint
path from s to t. For example, in Fig. 3.21b we have FV=K=2 disjoint paths (as the
sequence of nodes) from Ks={1,2,3} to Ki={6,7}: (1st) 1'-1"-4'-4"-6'-6"; (2nd) 2'-2"-5'-5"-
7'-7".

To find the K node-disjoint shortest paths (with minimal total cost of all K
paths) we modify the S" network as follows:

s =(G"{q,c}) (3.96)
where g:V xV" — R" — time cost function, gii=q(i,j) — value of the function for arc
(7).

Formulation of the K node-disjoint shortest paths problem in the S* network from s
to t defined as minimal cost flow problem with demanded flow equal K is as
follows:

> q;f; > min (3.97)

(i, e A"
with constraints: (3.91), (3.92) where we replace FV=K, (3.93) where we
replace FV=K, (3.94).
Method for solving this problem is based on the Busacker-Gowen algorithm
(Busacker & Gowen, 1961) with a complexity of O(V*), where V is the number of
nodes in G* and presented in details in (Tarapata, 2008e).
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Fig. 3.22. (a) Network S with values of g; and c;; (b) Network S™ related to S prepared for finding
FV=K=2 node-disjoint shortest paths, K:={1, 2, 3}, Ki={6, 7}
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Let us note that the above-presented method does not guarantee solving the
problem when K; and K; are vectors (and we must find the K node-disjoint paths
between K pairs of specified nodes). This method only allows finding K disjoint
paths between any of the nodes belonging to Ks and K:, so it can be used for
solving node-disjoint case problems: DP2.1, DP2.2, DP2.3, DP2 4.

In the paper (Tarapata & Wroclawski, 2011d) it has been shown how to use
modifications of the Edmonds-Karp (Edmonds & Karp, 1972) algorithm to solve
the NDRP-Sum and NDRP-Max problems (modifications of the DP2.5 problem).
A specific method for constructing the temporary network being used in the
modified Edmonds-Karp algorithm in order to find the K node-disoint paths
visiting specified nodes has been proposed.

3.4.4. Experimental Analysis of the Algorithms

We have conducted computations for real terrain areas used in Zlocien system
with different number of nodes: 5000, 7540 (Fig.3.23a), 10 000, 20 500, 25 000
(Fig. 3.23b) and 35 000. We have used random pairs of source-destination nodes
(single segments only (M=1)) for K objects (Ke{2, 3, 4, 5, 6}). We have performed
research for almost every possible combination of the SGDP algorithm parameters
defined in chapter 3.4.3.1 for the NDRP-Sum problem.

(a) (b)

Fig. 3.23. Typical mesh graphs representing a fragment of the terrain. Colour represents cost of
nodes: the light colour of the nodes (square) describes open (well passable) terrain, the dark colour
describes obstacles (forests, lakes, rivers, buildings), the lighter the colour the smaller the cost value.
(a) Graph with 7 540=65x116 nodes representing terrain near Drawsko (Poland).
(b) Graph with 25 000=125x200 nodes representing terrain near Radom (Poland) with two
node-disjoint paths found by the SGDP algorithm (lighter colour)

The following  stopStrategiesSets have been used: {{TimeLimit,
MaxlIterationNumber}, {TimeLimit, MaxIterationNumber, NextSolutionlsBetter},
{TimeLimit, MaxIterationNumberStrategy, NFeasibleSolutionsFound}}
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with the following values: MaxIterationNumber=10, NFeasibleSolutionsFound=4, in
NextSolutionlsBetter we set the minimum decrement of cost to 5.0, in TimeLimit
strategy we have restricted the execution time of each iteration to 5 000ms.

All computations have been done using a computer with Intel Core 2 Duo 2.2
GHz processor and 3GB RAM.
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Fig. 3.24. Average computation time (milliseconds, logarithmic scale) of the SGDP algorithm in
relation to stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory

In Fig. 3.24 we present the average computation time of the SGDP algorithm
in relation to stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory
for different number of nodes. From Fig. 3.24 results that in an average case the
complexity of the SGDP algorithm is time-polynomial and it is much better than
the theoretical estimation given in chapter 3.4.3.1. It results from using some
techniques (described in chapter 3.4.3.1) to decrease this complexity, such as:
randomization, different stop conditions, saving paths found earlier, etc. It is
easy to notice that we have obtained the shortest computation times for
stripeOrderStrategye {Ascending, Descending} and widthOfStripeGenerationStrategy
=Constant. Moreover, we can notice that for each pair stripeOrderStrategy-
widthOfStripeGenerationStrateqy computation time for PathsMemory=true is
significantly shorter than for PathsMemory=false (from about 3 to 10 times). It
results from the fact that we have saved paths found during previous
iterations for objects and if the next iteration uses the same stripe width as for
the previously found path, we will use these paths to decrease the computational
time of the iteration.

Analysis of results in Fig. 3.25 supplements the results presented above for
different values of stopStrategy. We obtained the shortest computation time for the
set of stop strategies {TimeLimit, MaxIterationNumber, NextSolutionlsBetter}.
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In Fig.3.26 we presented the average computation time (milliseconds,

logarithmic scale) of the SGDP algorithm in relation to the number of graph nodes

(V) and number of objects (K).
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relation to stopStrategy and PathsMemory
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Fig. 3.26. Average computation time (milliseconds, logarithmic scale) of the SGDP algorithm in
relation to the number of graphs nodes (V) and number of objects (K)

In Fig. 3.27 we presented the average accuracy coefficient avgAC of the SGDP

algorithm (AC=value of the objective function obtained from the SGDP

algorithm/optimal value of the objective function) in relation to:

stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory

(an accurate (optimal) solution of the problem (3.78)-(3.84) obtained using the the
GAMS/CPLEX 12.2 solver). The value of avgAC fluctuates from ~1.02 to ~1.6. It
means that the value of the objective function (sum of the cost of the K paths)

obtained from the SGDP algorithm was worse from ~2% to ~60% in relation to the
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optimal solution (see also Table 3.11). The SGDP algorithm gives the best values of
the  avgAC  for  PathsMemory=true,  stripeOrderStrategy=Random,  and
widthOfStripeGenerationStrategy=Constant.
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Fig. 3.27. Average accuracy coefficient (avgAC) of the SGDP algorithm in relation to
stripeOrderStrategy, widthOfStripeGenerationStrategy and PathsMemory (accurate solution obtained
using the GAMS/CPLEX 12.2 solver)

Table 3.11. Comparison of the computation time and accuracy of the SGDP algorithm with
characteristics of the optimal solution obtained by solving problem (3.78)-(3.84) using the
GAMS/CPLEX 12.2 solver for K=2

%4 5000 | 7540 | 10000 | 20500 | 25000 | 35 000
minOF_SGDP 162 1247 355 203 2729 23775
maxOF_SGDP 191 1464 362 208 3334 25488
avgOF_SGDP 167 1333 356 204 2950 24 364

OOF 158 956 353 190 1955 21 038
minAC 2.2% 30.4% 0.7% 6.7% 39.6% 13.0%
maxAC 204% | 53.1% 2.5% 8.9% 70.5% 21.2%
avgAC 5.5% 39.4% 1.0% 7.3% 50.9% 15.8%

minCT_SGDP 10 31 15 140 109 250

maxCT_SGDP 156 375 282 1375 1250 3079
avgCT_SGDP 98.2 224 .4 180.2 852.4 789.2 1786.7
CT_CPLEX 5200 8910 10690 | 73140 | 26030 | 114 410
minCTAC 33 24 38 53 21 37
maxCTAC 520 287 713 522 239 458
avgCTAC 529 39.7 59.3 85.8 33.0 64.0

In Table 3.11 we presented a comparison of the computation time and
accuracy of the SGDP algorithm with characteristics of the optimal solution
obtained by the solving problem (3.78)-(3.84) using the GAMS/CPLEX 12.2 solver
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for K=2. We used the following notations: OOF - optimal value of objective
function (3.78); minOF_SGDP, maxOF_SGDP, avgOF_SGDP - minimal, maximal
and average values of the objective function, respectively, obtained from the SGDP
algorithm; AC - percentage approximation coefficient of the SGDP
algorithm=(value of the objective function from the SGDP algorithm/optimal
value of the objective function) in percents-100%; minAC, maxAC, avgAC -
minimal, maximal and average values of AC;, minCT_SGDP, maxCT_SGDP,
avgCT_SGDP - minimal, maximal and average values of the computation time (in
msec) using the SGDP algorithm; CT_CPLEX - computation time (in msec) for
tinding the optimal solution using the GAMS/CPLEX 12.2 solver; minCTAC,
maxCTAC, avgCTAC - computation time acceleration coefficient CTAC values
(respectively: minimal, maximal, average), CTAC=computation time using the
GAMS/CPLEX solver/computation time using the SGDP algorithm. Values of
minAC, maxAC and avgAC indicate that the value of the objective function (sum of
the cost of the K paths) obtained from the SGDP algorithm was worse from ~1% to
~50% (average) in relation to the optimal solution, but the computation time for the
SGDP algorithm was shorter from ~30 to ~85 times in relation to the
GAMS/CPLEX solver (in selected cases even >700 times faster,
maxCTAC(10000)=713). It is possible to increase the accuracy of the algorithm by
changing its input parameters (in parenthesis we give the values, which have
been used during experiments): MaxlIterationNumber (10),
NFeasibleSolutionsFound (4), NextSolutionlsBetter (5.0), TimeLimit (5000ms).
Additional experiments have shown that by increasing, for example
MaxlIterationNumber or TimeLimit, we can increase the accuracy of the algorithm,
but at the cost of time. Parameter values, which have been used during
experiments described in this chapter made some compromise between accuracy
and time-complexity of the SGDP algorithm.

3.5. Summary

As it has been written in chapter 3.1, all presented methods have applications
in many transportation problems, especially ones related to paths planning. The
approach presented in chapter 3.2 is dedicated especially for multiresolution path
planning in grid graph-based route planning when the grid represents, for
example a terrain environment as a regular grid of terrain squares. It can be shown
that a multiresolution approach for path planning represented by finding shortest
paths in recurrently defined G* can also be used for multistage path planning: we
can first find a "rough" path in a "rough" terrain represented by G (for example in
Fig.3.11) and then we can find an accurate path in a more detailed environment.
However, the DSP algorithm gives a good result not only for the all-pairs shortest
paths problem (Table 3.4). Since the most complex steps of the algorithm (steps 1-3,
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"bottleneck") are done only one time (the b-graph is built only one time - initial
preprocessing), then if we compute a one-pair shortest path many times it allows
us to shorten the time of the "bottleneck". It is also possible to set a compromise
between space and time complexity of the DSP algorithm.

However, any algorithm solving the multiobjective shortest path problem
is, at least, exponential in the worst case analysis but we can use specific, effective
approaches for the special MOSP problems. In chapter 3.3 we focused on analysis
of complexity of selected MOSP problems and showed how we can use
modifications and advantage of fast implementations of the Dijkstra’s algorithm in
order to effectively and optimally solve them. Experimental results of the
computational time for the presented approach (especially the modified Dijkstra’s
algorithm) in chapter 3.3.5 confirm their good effectiveness for solving selected
MOSP problems. Models and methods described in the chapter were selected from
numerous approaches. Such problems as: determining disjoint paths (Li et al., 1992,
Schrijver & Seymour, 1992; Tarapata, 1999a; 2000e), stochastic network
dependencies (Sigal et al, 1980; Korzan, 1982; 1983a; 1983b; Loui, 1983),
time-dependencies in the network (Bernstein & Kelly, 1997; Cai et al., 1997; Djidjev
et al., 1995; Sherali et al., 1998) in multicriteria context were only indicated here.

Algorithms presented in chapter 3.4 (SGDP and modifications of minimal
cost flow algorithms) for solving the node-disjoint shortest K paths problem in
mesh graphs can be used for transportation, e.g. maneuver planning of military
detachments (Tarapata, 2009a). For one of them (SGDP) it has been shown that it is
fast (in comparison with the GAMS/CPLEX solver) and gives a satisfying solution
to the problem (experimental average approximation coefficient of the algorithm is
equal from 1% to 50%). Since the algorithm is approximated it seems to be essential
to provide necessary and sufficient conditions for obtaining optimal solutions and
estimate the theoretical approximation coefficient. Moreover, it seems to be
essential to examine sensitivity of the algorithm changing number of indirect
nodes in paths for each object and values of the parameters:
MaxFeasibleSolutionsFound, NextSolutionlsBetter, NFeasibleSolutionsFound. It 1is
possible to extend the considered problem using more criteria (e.g. minimization of
maximal path cost for any object) and obtaining the multicriteria disjoint shortest
paths problem.

Majority of the presented methods have been used in practice. Many very
interesting models for paths planning (alternative paths, simplest path,
time-dependent paths) have not been presented here due to limitation reasons and
can be found in other papers of the author (Tarapata, 2004b; 2006c; Tarapata et al.,
2009b; 2009d; Tarapata & Mierzejewski, 2010f). However, some of these
applications are presented in chapter 6.



Z. Tarapata — Models and Algorithms for Knowledge-Based Decision Support and Simulation... 109

Appendix 3.A.1. Proof of Theorem 3.1

The proof consists of three parts: in the first one we consider a case when

G'=G, in the second one we prove that L(d™(s,1)) 2 L™(d ™ (x, x,)) and the third

one contains proof that L(d™ (s, 1) S L™ (d ™ (x;, ) +L' (5, W, 21)) .
Part 1

If V'=V then G'=G and each x*™=x. Moreover, for each x*,y*eVG* occurs:

W(x",y")={x}, hence for each z',y € V. the following formulas are true:

T y) =, min L@C)+, min L) =0+e(xy),
cI(x,y) = d(.,.)g%nx(x,x)L(d("')) +d(.,.)£r$g3((x,y)L(d(" ) =0+c(x,y)

because of D™ (x,x)={x} and D™ (x,y)={d™"(x,y)} ={(x,y)} represents arc
from x to y, hence L(d™(x,y))=c(x,y). In such case L(d™"(s,t))=L""(d ™ (x,x,))
= L™™(d"™(x,,x,)) and formula (3.7) is fulfilled.

Part 2

Now, Let G"be a graph with n<V (n — count of nodes in G*) nodes. Let us take

into account the shortest path d™"(s,t) = (x, =8,X;,%,,..., X s ) =) in G from s to .
Each path d(s,t) in G ‘"generates" path d(x,,x,) in G* such, that

Y 3 xex; and d(x,,%x)= (%) =X, %], %,,.. =x,). Let

x*
i€{0,...1(d(s,t))} je(0,...,.1(d*(x, x; )} I

X))
us determine for each x;,i=0,..,0(d (x,x,)) set T(x;)={xed(s,t):xex;}. For
example, for graph G"in Fig. 3.2 we have:

d™(s=9,t=8)=(9,10,12,3,5,7,8), d(x.,x,)=(x,=E,x,=A,x,=B) and
T(x,)=1{9,10,12}, T(x,)={3}, T(x,)={5,7,8}. Let us consider any two

*

neighbouring b-nodes x;,x,,€d (x,,x,), i>0. Let us order nodes belonging to

i+1

T(x;) and T(x,,) topologically (|T(D)| describes cardinality of the set T(J)). We

obtain for T(x;) and T(x,,) topologically ordered sequences of nodes:

i+1/|T(x;+1 )l )

Xi 19X 50eeer and X, 4, X5, X Let us take the first X;; and the last

iy
x;‘T y Modes from T(x;) and the first node x;,, from T(x,,). It is easy to observe

that:

xil e W(x:/x;—l) ’ xi*,|T(

x| € W(X;, xi*+1) 4 x;+1,1 € W(x;+1,X;) (3A1)
For example (see Fig.3.2), for T(x_)=> x;l =3, for T(x,._,)=>
X,,=5,%,,=7,%,,=8 and next x,, =3 W(x,,x;)={1,3}, x,, =5 W(x,,x,)=1{5,6},

Xy = Y11 = 3€ W(xy, x,) = (3,4} .
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We will show that L(d™ (x 11,x1+11))2L*mj“(d in (xl,le))
Let us observe that d™"(x;,,x,,,)=d™"(x;,,x ||dmm X, ey ,X,.,) where

symbol "| |" denotes the concatenation of two paths, hence

*

(dmm( 111x1+11)) (dmm( 11’x i|T(x; )I))+L(dmm( T ()l l+11)) (3'A'2)

Next, let us note that from (3.5) results: L™"(d ™ (x;,x,,,)) = ci‘f_‘“(xl ,x,,,) for

i>0 because x;, x,,, are adjacent in G", and the length of the path from X, to X,
equals the length of the arc between these nodes, that is c” e )(xl,xm) and px))

equals like in (3.5). From (3.2) we have:

e (x x min L))+
i (i )= 4 D™ (W (x, X1 ) W (X i) (@)
+ min L{d(-,-
4 D™ (W (X, K0 ) W (¥ ) (@) (3.A3)

Let us consider the first elements of sums in (3.A.2) and (3.A.3). It is easy to
observe that

min L(d(-,)) S L(d™(x;,,x.. .
A D™ (W (] 20 W (] 6i01)) ( ( )) ( ( i1 lflT(xi)l)) (3A4)

*

i1’ 1|T(~c

because of (3.A.1) we obtain: d™"(x; \E D™ (W(x;,x,),W(x;,x,,)) and the

inequality (3.A.4) is clear. Let us consider the second elements of sums in (3.A.2)
and (3.A.3). By analogy we obtain:

min L(d d™" (x X,
s ) O DS iy ona) (3.A.5)

Taking into account (3.A.1) we have:

dmm( 1+1,1)E Dmin (W(xz 4 x1+l) W(x;l’ xz*))

T (x)”

and inequality (3.A.5) is clear. From (3.A.4) and (3.A.5) results

*

L(d™ (0, X100 1)) Z LA™ (2, 3x0,0)) = €27 (2, X30)

i-1
for each >0. For i=0 we have to examine condition:

L(d™ (xg,1,%,,)) 2 L™ (d ™ (x,,x,)) . We can then again write:

4™ (X, %,0) =A™ (Ko X e N TA™ (% e %1)

* * *

L™ (2, )) = L@ (x5, ) +LE™ ()

Next, from (3.5) results that
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L™ (d ™0 (o x e (xl x) = min L{d(-,-
( ( 07 )) % ( 0 1) 4D (W W (5, ) ( ( ))
7

hence L(d™"(x’ o ,X11)) 2 min L(d(-,")).

d(-,)eD™™ (W (xg,57),W (x7,%0))

"(x,x,)) s

We have shown that condition L(d™"(x;,,x,,,))=L™"(d™
)2 L™ (d ™ (x, x,))

fulfilled for each i=0,..,1(d (x,,x))-1, hence L(d™(s,
from (3.7) is fulfilled.
Part 3

L(d™ (s, £)) SL™(d ™ (x,,x,))

To prove that we will first show that

L(d™ (x; 1, X, 1)) SL™(d ™ (x;,x,,,)), i=1,..,1'(d"(x,x,))~1, by analogy to part 2.
From (3.A.2), (3.5) and (3.6) results: L™ (d ™™ (x;,x,,,))= cmax(xl ,x.,) and from (3.3)

™ (x, x max L{d(,"))+
Xioq ( i l+l) d(- ,)eDmi“(W(x;,xg_l),W(x A+1)) ( (’ ))
+ max Ld(,-
A D™ (W, i )W (x1,)) (@) (3.A.6)

It is easy to notice, by analogy to (3.A.4) and (3.A.5), that the first element of
the sum from (3.A.6) is greater than the first element of the sum from (3.A.2) and
the second element of the sum from (3.A.6) is greater than the second element of

the sum from (3.A2), hence  L(d™(x;,,x,,,))SL™™(d ™ (x;,x,.)),

i=1,..,I'(d (x,,x,))—1. For i=0 we have to examine condition:
L(d™ (51,%,,1)) S LA™ (30, x,)) +L'(s, W (x5, x,)

But d™"(x;,,x;,)=d™(x;, 2, )| 1d™(x), ;) and

0,17 0,T

L™ (2, )) = LA™ (x5 ) LA™ 30)
Next, from (3.3) and (3.5) results that L™ (d™(x,,x,))= c;“ax(xo,xl)

max L(d(-,")). Since L'(s,W(x,,x,)) is the length of the longest of the

d(- D™ (W (xg,2), W (x],x)

*

shortest paths from S=x01 to any node from W(x,,x,) hence

L'(s,W(x0,x,)) 2 L(d™ (x4, %, . )) - By analogy,

max - Ld(,)) 2 LA™ )

d(-/)eD™ (W (x5, 1), W (x1,xp)
Thus, we have shown that condition:
L(d™ (s, £)) S L™ (d ™ (x, %))+ L'(s, W(x., 7))

is fulfilled.
Q.E.D. .



4. Models and Algorithms for Movement Synchronization

4.1. Introduction

Scheduling movement of objects is an essential element of numerous systems:
for routing in computer networks (Cidon et al., 1997; 1999; Kerbache & Smith, 2000;
Silva & Craveirinha, 2004; Tarapata, 2006a), for movement planning of mobile
robots (Buchli, 2006; Jing, 2008; Ozaki et al., 1993), for tasks processed inside
distributed or parallel computing systems (Leung, 2004; Tarapata, 1999a; 2000e),
for redeployment of military detachments (Logan, 1997a; Rajput & Karr, 1994;
Tarapata, 1999b; 2000b; 2000f; 2001; 2003a; 2004b; 2004c; 2005a; 2005b; 2007a; 2007e;
2008a; 2008b; 2008c; 2008d; 2009a; 2010b, 2011b), in crowd planning and simulation
(Klupfel et al., 2005; Najgebauer et al., 2009) or in computer games (Van der Akker
et al., 2010), etc. The movement synchronization scheduling (MSS) problem deals
with planning of movement for many objects to synchronize their movement. This
problem most often consists of two subproblems: (MSS1) paths planning for many
objects; (MSS2) movement organization by determining synchronization
checkpoints and times on the paths. The MSS1 problem has been analysed in detail
in chapter 3. The MSS2, e.g. in military applications, results from the fact that
objects (tanks, trucks, aircrafts, units, convoys) are moved according to a group
pattern. From the point of view of mission realization, preservation of group
pattern during military actions is very important: each object being moved in
a group (e.g. during attack, during redeployment) must keep specific distances
between each other inside the group (Logan, 1997a; Tarapata, 2011a) or must
achieve specific checkpoints in given times (Tarapata, 2009a). Taking into account
military applications (e.g. battlefield simulation systems, military logistics
systems), movement synchronization scheduling has an influence on accuracy,
adequacy, effectiveness and other characteristics of such systems. Afterwards, the
problem is to model and optimize such movements of detachments to achieve
intended goals of commands (such as: achievement of destinations on restricted
time, avoiding losses during redeployment etc.). A special type of system with this
requirement is the Allied Deployment and Movement System (ADAMS)
(Heal & Garnett, 2001), which has been developed in support of multinational
force movement planning in NATO. The ADAMS provides the users with the tools
to plan and manage deployment operations. The other example of using such
requirements are modules for movement planning and simulation of military
objects (units) in combat simulators (Ceranowicz, 1994; Campbell et al., 1995,
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Logan, 1997a; Henninger et al., 2000; Longtin & Megherbi, 1995; Najgebauer et al.,
2007b; Rajput & Karr, 1994, Reece et al., 2000; Tarapata, 2000c; 2010b).

This chapter is organized as follows. In chapter 4.2 selected scheduling
models and algorithms for synchronous movement are described. Some properties
of these algorithms are proved. Experimental analysis of the algorithms has been
given. In chapter 4.3 two-criteria movement synchronization scheduling problem
has been defined. Method for solving the problem has been described. Presented
models and algorithms are based on the papers (Tarapata 2001; 2005b; 2007a;
2008a; 2008d; 2009a; 2010b).

4.2. Movement Synchronization Scheduling (MSS)

4.2.1. Scheduling Models of Synchronous Movement

4.2.1.1. Notations and definitions

Let us assume that we have a directed graph G that defines the structure of
the terrain (divided into squares, hexagons - see chapter 2), G=<VG,AG>, V=7G,
Vi - set of graph nodes (as centre of terrain squares, crossroads), Ac - set of graph
arcs, AccVex Vg, A=A=G. On each arc we have a defined value d, . of function 4,

which describes the terrain distance between the graph nodes n and n’. K objects
(columns, trucks, tasks) move from source nodes vector s=(si, s2,..., Sk) to
destination nodes vector t=(t1, t,..., tk) of G. For further discussion we accepted the

following notations (similar notations have been given in chapter 3.3.3.1, s, =i°(k),

t, =i'(k)):

I(s,t) =1, = (°k)=s,, i'(k),..., i (k),.., i%(k)=t,) (4.1)

T.(I,) =T, =(2°(k), 7' (k), ..., 7" (K), ... 7™ (k) = 7(1,)) (4.2)
_ _ k k k

Vil = Vi = (200 Py i) (43)

where Ir - vector of nodes describing the path for the k-th object,
v }(i’"‘l(k), im(k))e Ag; i'(k) - the r-th node on the path for the k-th object; s,

tx - source and destination nodes for the k-th object; T - vector of time instances of

achieving the nodes belonging to the path for the k-th object; 7"(k) - time instance
of achieving node i’(k) by the head of the k-th object, ¥V _ z™*(k)>7"(k)>0

k=1,K r=0,Rk -1

and V_ 7°(k)=0; %(k)=1(I,) - time of achieving destination node by the k-th

k=1,K
k

object; Vi - vector of velocities (A

, of the k-th object on the arc (" (k), i (k))
of its path; Rx - number of arcs belonging to the path of the k-th object. For the set
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I1(s,t) describing the set of vectors I(s,t) of paths from s=(sy, s,...,5x) to t=(t1, t2,...,tk)
we have defined time 7~ as the earliest time of achieving the destination node by
the most delayed object:

L T R TRy o) (44)

Let k* denote the index of the object for which the moment of achieving the
destination node for its path is the latest among paths for other objects, i.e.

k=k o ™ (k")= max 7%(k). Let
ke{l,..K}

IP, :(il(k), i (k), e 1,(k), .., iPk(k)) (4.5)
denote a vector of nodes (checkpoints) at which we must align the head of the k-th
object in relation to the heads of other objects, where i,(k)- the p-th element of IPx
satisfying: Vp=1,B, Ire {1,..,R} i (k)=i"(k) and r,(k)=re{1,..,R} & i (k)=i"(k).
The form of IPx and r,(k) indicate that the path for the k-th object must cross by
nodes belonging to IPx. Let, by analogy

TP, =(7,(k), 7,(k),.., T,(K),..., T, (K)) (4.6)

denote ordered set of time instances of achievement particular alighment nodes
from set IPx by the k-th object head, 7,(k) denotes moment of achieving the p-th

alignment node by the k-th object,

0
2 (0)=7"00+ D 4.7)
re{O,...,rp(k)—l}
d, .
. — )" (k)
where: ¢, i) = o (4.8)
i (k)i (k)

describes real movement time (time-cost) of the k-th object on the arc
(i’(k),i”l(k))e A between i"(k) and i"*'(k) nodes of its path.
Additionally, we made the assumption that P1=P,=...=Px=N, i.e. for all objects

exist the same number of alignment points (nodes). Let us define for each p=1,..,N
the following characteristics:

%, = max 7, (k) (4.9)
av; 1 <

T = Ker(k) (4.10)
k=1

AT (k)=1,(k") 7, (k) (4.11)
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A7 = max A7, (k) (4.12)

ke{l,...K}

The most important criteria for movement synchronization scheduling can be
divided into two categories. The first category is time of movement of K objects.
We can define two basic measures of this category:

(C1.1): ™= Jnax 7%(k) — min (4.13)
K

(C1.2): > 7%(k) - min (4.14)
k=1

The second category is "distance" between times of achieving alignment
points by all of K objects. We can define four main measures of this category:

N K

(C.2.1): Z;(r;‘“ ~7,(k)) > min (4.15)
p=1 k=1

(C.2.2): per{?}f}v}kg?ﬁ}(fp - Tp(k)) — min (4.16)
K N

(C23): > Y| —1,(k)|— min (4.17)
k=1 p=1

. 1 avg _ .
(C.2.4): nin max 7, Tp(k)‘ — min (4.18)

Presented criteria have the following interpretation: C.1.1 minimizes the time
of achieving destination node by the last object (the most delayed); C.1.2 minimizes
the total time of achieving destination nodes by all objects; C.2.1 minimizes total
differences in times of achieving all checkpoints by all objects; C.2.2 minimizes the
minimal of maximal differences in times of achieving any checkpoint by any object;
C.2.3 minimizes total average differences in times of achieving all checkpoints by
all objects; C.2.4 minimizes the minimal of maximal average differences of
achieving any checkpoint by any object.

4.2.1.2. Formulation of movement synchronization problem with time (MSST)

One of the formulations of the optimization problem for movement
synchronization of K objects can be defined as follows (we use criteria C.2.1
defined by (4.15)): for fixed paths Ir of each k-th object to determine such

o r=0,R -1, k=1,K that

ir(k)/ir-%-l(k) 7

iZ(T;‘“ *—7,(k)) > min (4.19)

p=1 k=1

with constraints:
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Oy SO L (K),  r=0,R,-1, k=1,K (4.20)

i" (k)™ (k) i (k),i™ (k)

k — _
Uity = 0, r=0,R -1, k=1,K (4.21)

max

where v’ o (k)(

k) describes the maximal velocity of the k-th object resulting from

its technical properties and topographical condition on the arc (ir(k),i“l(k)) € A;.

Taking into consideration (4.7) and (4.9) we can write (4.19) as follows:
N K R . 4+l
ZZ max 7 D LU O (k) + > B0 OF® || - min (4.22)
p=1 k=1 i i

Path Iy for the k-th object may be disjoint or not and must cross at fixed
alignment points or we have to dynamically determine these points (e.g. during
movement simulation/realization). In the first case we have an NP-hard
optimization problem and we can solve it using approximation algorithms for
tinding disjoint paths (see chapter 3.4). In the second case we can use a two-stage
approach: (*) finding the best paths for K objects iteratively using methods for
tinding the m-th (1st, 2nd, 3rd, etc.) best path for each of the K objects (Eppstein,
1999) and visiting specified nodes  (Ibaraki, 1973; Ibaraki et al., 1978);
(**) synchronizing movement of K objects by solving problem (4.19)-(4.21) and
using algorithms described in chapter 4.2.2 (Tarapata, 2008d; 2009a).

The multicriteria approach to movement synchronization scheduling is considered
in chapter 4.3.

We can consider one of the extensions of problem (4.19)-(4.21): adding

a constraint as follows

LW g g =1,K (4.23)

we would like to find such a movement schedule that achieving the earliest
moment of destination node by the latest object is no greater than T™> > 7.

To solve the problem (4.19)-(4.21) with the additional constraint (4.23), in
generality, we define this problem in its changed form: for fixed paths Ix of each
k-th object to determine such x, k=1,...,K, p=1,...., N that:

p

ii(]n}aﬁ [T ])+Zxﬁj—[rp(k)+ixkin—>min (4.24)

p=1k i=1

with constraints:
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> x,<FT(k),  k=1..K (4.25)

>0, k=1,..,.K, p=1,.,N (4.26)

where xi, describes the time instance which is added to 7,(k) for the k-th object in

p
its p-th alignment point (node). It can be observed that Tp(k)+2xki = T;,(k) which

can be used in algorithms in chapter 4.2.2 as a modified (by algorithms) moment of
achieving the p-th alignment point by the k-th object. Therefore, if we denote
AT;)max(k) =Z';“ax —T;)(k), where Z';)mx is defined like in (4.9), then function (4.24) has
an equivalent form of iZArm"‘x ) = min and we obtain (4.19). Free time FT(k)
p1 k=1
for the k-th object we define as: FT(k)=T""—7%(k).
We can observe that problem (4.19)-(4.21) is similar to a problem of task

K
k=

scheduling on parallel processors (Leung, 2004). The following similarities exist:
(a) scheduling the problem before critical lines to minimize the sum of maximal
delays in alignment points (nodes); the p-th critical line is created by nodes

1,(1),,(2),...,i,(K); (b) we have parts of the path (arcs) as tasks; (c) we have moved
objects as processors (K); (d) tasks are indivisible and dependent (the dependence
is defined by each of the arc V (i’"‘l(k), i’"(k))e A belonging to the path for

me{l,..,R;}
each of the object). Differences: (a) tasks (arcs of the path) are assigned to
processors (objects) (we have no influence on this assignment) and we decide only
on the delays of the operation of processors (to increase realization time of tasks).

4.2.1.3. Formulation of movement synchronization problem with a group
pattern (MSSD)

In chapter 4.2.1.2 we have defined movement synchronization of many
objects with time (MSST): synchronization has been done considering achievement
times of checkpoints. Here, we consider movement synchronization using some
group patterns: in this case synchronization will be done according to some
movement patterns and taking into account keeping terrain distances between
objects resulting from a pattern. To define the MSSD problem we give some
definitions.

As a group pattern (j-th) of the K objects numbered from 0 to K-1 we
understand the following 2K-dimensional vector:

(xo,yO,Ax{,Ay{,...,Ax{;_l,Ay{(_l) (4.27)
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where xo, yo describe coordinates of the reference object (e.g. vehicle of
commander).
With reference to this object we can set the location of the other objects in the

group. The pairs (Ax,{,Ay,{), k=1,K-1 allow us to set coordinates of the k-th
object inside the j-th group pattern as follows:

(% yi) = (o +Ax], yo + Ay]) (4.28)

Additionally, we assume that there exists some a tolerance range &’ for
values Ax/, Ay], k=1,K—1. It means that coordinates of the k-th object in the j-th

group pattern are defined as follows:
(xyl)=(x,+Ax] £87,y, +Ay] +67) (4.29)

If coordinates of each object in a group satisfy (4.29) then we assume that the
j-th group pattern is kept. It is important to say that a group pattern (4.27) is
defined under the assumption that an angle « between the direction vector of the
group and axis Oy in the basic coordinate system is equal 0°. Hence, coordinates
(4.28) and (4.29) are determined using this assumption. Relation between
coordinates in the basic system Oxy and rotated 0XY with « angle is presented in
(4.31). Examples of typical movement group patterns are presented in Fig. 4.1. It
has been assumed that =00, that is the direction vector of the group cover Oy axis
of the basic coordinate system.

At the moment ¢ current location of group is defined as follows:

(Xo(8), Yo(1), X, (8), Y, (), Xy (1), Yo (1), @) (4.30)

where coordinates in (4.30) are determined in the coordinate system rotated with
angle « with relation to the basic coordinate system and « describes the angle
between the direction vector of the group and axis Oy in the basic coordinate
system. Relation between coordinates in the basic system Oxy and rotated 0XY with
angle «is the following:

(x,{,y,f) = (X,f .cosa-Y/ sina, X! -sina+Y/cos 0{) (4.31)

If we denote with (x,(t),1,(t)) the location of the reference object at the

moment t then the current, pattern location of the K considered objects grouped
with j-th group pattern in the basic coordinate system at the moment ¢ is defined as
follows:

(%0 (), Yo(£), X[ (1), YL(E), oo Xl s (), Y (1)) (4.32)
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where: x/(t)=x,(t)+Ax], yl(t)=vy,(t)+Ay. describe the coordinate of the k-th
object in the group according to the j-th pattern at the moment ¢ in the basic
coordinate system.

Since the "distance" di(t) of the current group location from the j-th group

pattern at the moment t we can understand the following function (with parameter
n>0):
K-1 1
(qu qyk ) (433)
k=1
where:

0 ()= {xku)—x,{(t), when x()e[x() -85+ 5,

0 , otherwise

0 , otherwise

(6= {yka)—yz’(t), when (02 [5/()-0'y/(0)+ 5] o

% s Y
4 4
A 0%.3) A% (%)
v —:
S S —
I f A | T
Ay, i £9 . r
-] | 3 S =R
| |
| |
T e l | 4 t I
| |
1 1 : 1 1 A 1 i ! 1 i i
0 1 2 3 4 5 0 1 2 3 4 5
1 y
et _____:_,_ 4
y Ay R #ﬁk (%06)

Fig. 4.1. Examples of typical movement group patterns for K=5 objects

We also assume that we have set, for each k-th object in the group, the movement
path I,(s,t)=1=(i"(k)=s,, i'(k),..., i’ (k),..., i"(k)=t,) described in (4.1) from the

source node i’(k)=s, to the destination node i“(k)=t, k=0,K-1 (apart from
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how can we determine these paths; we can use methods from chapter 3).
Moreover, we assume that these paths assure us a satisfying condition, which
concerns with distances Ax/+J’ (see (4.29)) from group pattern, for each k-th
object in the group.

In the considered problem we want to set the movement speed for each object
in the group in such a way, to minimize the total terrain distances from the group
pattern in such moments when the reference object achieves each node on its path.
This problem is defined in detail as follows: we want to find such values of speed

vf,(k)i,ﬂ(k) >0 for all objects on each arc (i’(k),i’”(k)) of the path I, r=1,R, -1,

k=0,K-1, to minimize the value of the distance from group pattern defined as
below (MSSD problem):

Ry
> d'(t,) — min (4.36)
p=1

with constraints: (4.20) and (4.21)

where #, denotes achieving the moment of the p-th node on the path for the
reference object (with number k=0),

-1

=

t,= 2. Cr0,1(0) (4.37)
‘ K-1
d](tp) = Z' qu(tp) |+ | qyk (tp) | (438)
k=1
and c, (0. (0 defined by (4.8), q, (t=t,) defined by (4.34), g, (t=1,) defined by
(4.35).

Let us denote with x, ( 0)(tp), Yol 0)(tp) coordinates of the reference object (with

number 0) in the p-th node i*(0) on its path at the moment #,. Pattern coordinates

of the k-th object in the group according to the j-th pattern we calculate as follows:

x,{(tp) = xi,,(o)(tp) +Ax] (4.39)

yi(tp)zyip(o)(tp)-i_Ayl{ (440)

Coordinates xk(tp), y(tp) of the current location of the k-th object in the group at the
moment #, we calculate according to the following rule. First, we must determine
between which nodes on the path the k-th object is located at moment t,. We notice
that the k-th object at the moment £, is located between nodes on its path with such

numbers . and 7, +1 for which the following formula is fulfilled:
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B .
7} r+1

b= Conpim <t, and by = chi"l(k),iy(k) >t, (4.41)

If tr; = gci,,l B t,, then the i-th object is located inside the node of its path

with number 7 at the moment t,. Then, coordinates of the current location of the

i-th object at the moment #, are the following: x,(t,)=x(i i (), yi(t,) = (rk (k)),

where x(i rk( ), y(lrk( )) denote coordinates of node i" (k), in which the i-th object
is located. Otherwise, when the i-th object is located between nodes with numbers
r. and 1, +1, the coordinates of the current location of the object are set according

to the procedure described in Fig.4.2. In this figure dist denotes the distance

covered in the time of f, —f . with the k-th object moving from node i (k) to node

i* +1(k) This distance is calculated from the following formula:
dist=v". . (t,—t. 442
i% (k) i%*! (k) (7’ rk) ( )
where vrk(k) g denotes the speed of the k-th object between nodes i (k) and
l-r,:+1 (k) )
(3,04, 1 (£))

=
=

Fig. 4.2. Coordinates (x(t,), y,(t,)) determining

Having dist we can calculate 2 and b from the system of equations:

dist* = a* + b*
A —

. (4.43)
B b

where A =|y(i"*'(k))—y(i* (k))|, B=| x(i**'(k)) - x(i" (k)) |. We obtain:
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. 42
jii, when B#0
b= ?4_1 (4.44)
0 , when B=0
A-b
—_—, hen B0
o= B when * (445)

dist , when B=0

Coordinates of the current location of the i-th object at the moment £, are used in
equations (4.34), (4.35) and we can calculate them as follows:

At {x(i”{ (k))+b, when x(irki (k)) < x(i”ki“(k)) 4.46)
x(i*(k))=b, when x(i* (k)) = x(i" " (k))

it )= {x(f:{ (k))+a, when y(z::{ <k>)<y<z:{:<k>> 447
x(i" (k))=a, when y(i" (k)2 y(i" " (k)

Problem (4.36) with constrains (4.20) and (4.21) is a nonlinear programming
problem and may be solved using one of commercial optimization packages
(GAMS, MATHEMATICA) by invoking appropriate functions.

Another approach to define a group pattern has been presented in (Tarapata,
2007b). In this paper a multicriteria weighted graph similarity method for
structural patterns recognition has been described. This approach may also be used
for planning group movement with group patterns.

4.2.1.4. Example of the GAMS model for the MSST problem

The source code of the GAMS model for solving the MSST problem with
parameters defined in Table 4.3 (for FT(k) in Table 4.4, chapter 4.2.2.3) is presented
below. We set the following equivalence between notations being used in the
MSST model and in the source code of the GAMS model (notation x=y describes
that x in the GAMS model is equivalent to y in the MSST model):

tau(k,p)=7,(k)  FT(k)=FT(k) clkp)=A7,"(k)=7""-7,(k) x(kp)=x,

p N
cost_p(kp)= > x, max(p)= max (Tp(] )+Dx;

i=1 j, z =value of objective function.

Sets

k objects for movement

/1, 2, 3/

P alignment points (checkpoints)
/1, 2, 3, 4/ ;

Alias (p, pp)
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Alias (k, kk)

Table
tau(k,p) table of values from (4.5)
1 2 3 4
3 2 13 16 17
2 5 9 13 16
1 7 12 14 15;
Parameter
FT (k) free times
/ 3 1
2 2
1 0o /
Parameter
c(k,p) table delta tau max p(k);

c (k,p)=smax (kk, tau(kk,p))-tau(k,p);

Variables

x(k,p) decision variable in (4.24)-(4.26)
cost_p(k,p) partial sum of x(k,p) from (4.24)

max (p) the first component of sum from (4.24)
z value of objective function (4.24);

Positive Variable x;

Equations

partial_cost (k,p) partial sum of x(k,p) from (4.24)
max_eq (p) the first component of sum from (4.24)
FT constr (k) the k-th inequality from (4.25)
objective value of objective function (4.24);

partial_cost (k,p) ..cost_p (k,p)=e=sum(pp$ (ORD (pp) le ORD (p)),x (k,pp));

max_eq(p) .. max(p)=e=smax(k,tau(k,p)+cost_p(k,p));
FT_constr(k) .. sum(p, x(k,p)) =1= FT(k);
objective .. z =e= sum((k,p),max(p)- (tau(k,p)+cost_p(k,p)));

Model Schedule /all/ ;
Solve Schedule using dnlp minimizing z ;

Display x.1, z.1;

Solving this problem using the GAMS/CONOPT solver we obtain:

- 61 VARIABLE x.L decision variable in (4.24)-(4.26)

1 4
2 2.000
3 1.000
- 61 VARIABLE z.L = 14.000 wvalue

of objective function 4.24).
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x(21)=2 x(3,4)=1

The obtained result is as follows: and remaining values

of x(k,p) are equal to 0. The value of the objective function is equal to 14.

4.2.2. Scheduling Algorithms for Movement Synchronization

For solving the MSS problem two movement scheduling algorithms are
presented: the first (MSA.1) is for solving problem (4.19)-(4.21) and the second
(MSA.2) is for solving problem (4.24)-(4.26). Let us denote with T;,(k), as it has been
written in chapter 4.2.1.2, modified (by algorithms) the moment of achieving the
p-th alignment point by the k-th object and AT;, (k)= T;(k) -7, (k).

p

4.2.2.1. Dynamic programming algorithm
The first algorithm MSA.1 is based on the dynamic programming approach.

Algorithm MSA.1

For each pe{l,...,N} recurrently compute the modified moments of
achieving alignment nodes for K objects:

7,(k)= max (A7, (j)+7,(j)), for1<k<K (4.48)

4 je(1,..,K)

and in addition T(‘)(k)zfo(k)ZTO(k) , 1<k<K.

Let us note that VK}AT;(k)ZO. It results from (4.48) and from the

ke{1,...,

assumption that V.V _ 7"'(k)>7'(k)>0. Having V V 7 (k) and

k=LK r=0,R, -1 pel{l,..N} ke{l,..,K}

Az(k), we can compute as follows: ke{l\Y.l.,K}re{OY,Rk} v'(k):=7"(k)+ A7, (k),

d
— . \4 \4 'k .= (k)™ (k)
q(r)= max{p €{l..,N}: rp(k) < r} and ke(1,...K} re{0,.., Ry} G i)’ T‘r”(k) - Tlr(k) - The

complexity of the MSA.1 algorithm is equal to ®(K2N ) but we can obtain
complexity ®(KN) because for each pe{1,...,.N} T;(1)=T;(2)=...=T;(K).

The idea of the algorithm is presented in Fig.4.3 and the values of some
characteristics in Table 4.1.

Table 4.1. Values of Tp(k) and Az';(k) for data from Fig. 4.3

. z,(k) AT, (k)
p=1|p=2 | p=3 | p=4 | p=1|p=2|p=3 | p=4
3 2 13 16 17 5 -1 -2 -2
2 5 9 13 16 2 3 1 -1
1 7 12 14 15 0 0 0 0
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Fig. 4.3. An idea of the MSA.1 algorithm: (a) paths for K=3 objects with times of achieving
alignment nodes ip(k) on paths for each p=1,...4 and k=1,...,3; (b) the result of algorithm MSA.1
- times of achieving alignment nodes by K objects have the same value equalling 25

Theorem 4.1
Algorithm MSA.1 solves the problem (4.19)-(4.21) optimally.

Proof:

For fixed p€{l,..,N} the following condition is fulfilled: T;(1)=T;(2)=...=T (K),

p

K
hence Z(T;,max -7 (k)) =0, because the condition is fulfilled for each p€{l,...,N}, so
k=1

we obtain: iZ(T;max ~7,(k)) =0.

K
p=1 k=1

It is easy to notice, that MSA.1 algorithm simultaneously minimizes
criteria C.2.2, C.2.3 and C.2.4.
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Let us note that if two alignment nodes p and p+1 are neighbouring nodes on
a path for the k-th object, that is the following formula is fulfilled

r(k)y=1i'(k)=r,,,(k)=i""(k) and then from (4.8) and (4.48) results that:

7,(k)= max (A7, () +7,(1)) = max (z,,() - 7,,() +7,(I)) =

4 le{1,..., K} le{1,... K}
= max (2, (0) =7, (D) + 7,0 D+, o, | = (4.49)

= max (Tp_l(l) + Cir’”’l(l)(l),ir”(l)(l)) = z‘p_l(k) + le{n},?,)lg} Ci'ﬂ’l(”(l),i'”(l)(l)

where ¢, .,
ip—l

is defined by (4.8).

i)
Algorithm MSA.1, even though is very simple, has interesting properties
(Theorem 4.2 and Theorem 4.3).

Theorem 4.2

Necessary conditions for obtaining, for each solution (k) from MSA.1 algorithm,
that:

e, o (k) < 7 (k) (4.50)
are following:
1 e 45020 (4.51)
20. ke{lYi,K}ATl*(k) < ATy (k)< ... < Aty (k) (4.52)
Proof:
Ad.1°

Let us assume conversely, that

p'e{lE,AI“,N}k‘e{lEJ“,K} ATV‘(k )<0
Then from (4.11) results that 7,(k’) <7, (k'). But from (4.48) results that for each
ke{l,..,K} the following equality is true: T;,(k)= max (AT;,_1(1)+TP,(Z)), because

lef1,....K}

the following condition is fulfilled: Vv K}AT;‘q(Z) >0, hence 7, (k") 2 7,(k")>7,(k").

le(1,..,

If we place k'=k* and p’=N, then we obtain that 7,(k’) > 7,(k"). This contradiction
ends the first part of the proof.

Ad.20

Let us assume conversely, that

3 AT (K)> AT, (k) (4.53)

p'e{l1,...N-1} k'e{1,..,K
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and that the following conditions, resulting from the first part of the proof, are

satisfied:
ke{X.’K}Arp‘(k)ZO, Az, (k)20 (4.54)
We will show that if formula (4.53) is fulfilled, then 7, (k’)>7,,,(k’). Let us

assume that p’=1. Then from (4.54) we have that: {1EI K}AT;(k')>AT;(k') or
equivalently

7 (k*)_fl (k|) >Tz(k*)_fz(k|) (4'55)

ke{T,..K}

From (4.48) and (4.54) results that

7.(k") = max ,(k)=7, (k) (4.56)

Taking into account (4.55) we obtain:

7, (K) -7, (k") +7,(k") = 7,(k)>0 (4.58)
or equivalently

T, (k) -7, (k") +7,(k") > 7,(k) (4.59)
If we place (4.57) into (4.58) we obtain:

7,(k') = max}(fl (k) =7, (k) +7,(k)) 2 7, (k") = 7, (k") + 7, (k") > 7, (K )

If we set k’=k’, then 7,(k’)>7,(k') and we obtain a contradiction with (4.50).

Therefore we have proved that apart from (4.51), the condition (4.52) is necessary
to fulfil (4.50).

Theorem 4.3

Conditions (4.51) and (4.52) are jointly sufficient to satisfy formula (4.50) for each
solution (k) obtained from algorithm MSA.1.

Proof:

To prove the thesis of the theorem we need to show that if (4.51) and (4.52) are
tulfilled then for each p=1,..,.N

7 (k)< 7, (K) (4.60)
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We will prove it by induction on p. From (4.56) results that formula (4.60) is true
for p=1. Let us place p=m and let us assume that (4.60) is true. We obtain

7, (k)= max (A7, () +7,(1)) <7, (k") (4.61)

m

We will show that formula (4.60) is true for m+1. We have

Tm+1

(k'Y= max (A7, () +7,,,() = max (z, () = 7,,(1) + 7,,,(])) (4.62)

lef1,...,K} le{1,..,K}

From formula (4.61) results that 7, (k')<7, (k'), from assumption (4.51)

results that \v

o K}Tp(k*)ZTp(l) and from assumption (4.52) that

1 {1V q t (k)-7,()<7,,,(k)—7,,(]), hence we can write (4.62) as follows:

Tk = max (2,(1) =7, () +7,.,() < max

(2,0) =7, +7,.,(D) <
(k) =2, () +7,0(D) S 7,0 ()

Q.E.D.
.

The main conclusion from Theorem 4.2 and Theorem 4.3 is as follows: if for
each k=1,...,K we set v (k)=R¢ then from (4.60) we have: kr{r11a>1<<}T‘Rk(k) <7k’ Tt

means that the value of 7 has not changed, i.e. the latest (the most delayed)
moment of achieving destination nodes by all objects have not changed, and
then constraint (4.23) is fulfilled. It means that MSA.1 optimally also solves
problems (4.19)-(4.21) with constraint (4.23).

In Fig.4.4 we present conclusions from Theorem 4.2 and Theorem 4.3.
Table 4.2 presents some characteristics of the problem from Fig. 4.4.

Table 4.2. Values of Z'p(k) and Az';(k) for data from Fig. 4.4

. z,(k) AT, (k)
p=1|p=2 | p=3 | p=4 | p=1|p=2|p=3 | p=4
3 1 5 11 13 3 3 3 4
2 2 4 9 10 2 4 5 7
1 4 8 14 17 0 0 0 0
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Fig. 4.4. Paths for K=3 objects satisfying conditions of Theorem 4.2 and Theorem 4.3: (a) times
of achieving alignment nodes i,(k) on the paths for each p=1,...4 and k=1,...,3; (b) result
of algorithm MSA.1 - times of achieving alignment nodes by K objects have the same value
equalling 17) and they are not greater than for object k*=1

Theorem 4.4
Let Az!(k)=max{A7  (k)-A7,(k),0} and Arﬁzkg{r}:c},)é}AT;l(k) be defined. If

\ \ AT; (k)= 0 then the following formula is fulfilled:

pe{l,..,N} ke{l,..,K}

v o(k)=1,()+ Y Azl (4.63)
p'e{l,...N}
p'<p

Proof:

Let us note that if VK}AT;(k)SAT;(k)S...SAT;V(k) (the fulfilment of the

ke{l,...,

condition (4.52)) then the following formula is fulfilled :

A7i(k)=max{A7,_ (k) - AT,(k),0}=0— Azl =0

peil.. N} P
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hence T;,(k*) = Tp(k*) :
To prove that formula (4.63) is true we will show, taking into account (4.48), that
for each p=1,...,N the following formula is fulfilled:

Tp(k*):Tp(k*)+p‘E{;,N}AT = max (AT;_l(k)+rp(k)) (4.64)
p'sp

We will prove, by induction on p, that the left side L= Tp(k*)+ z ATZ, of the

p'e{1,..N}
p'sp
formula (4.64) is equal to the right side R = max (AT (k) + Tp(k)) , that is L=R.

ke{1,...K}

For p=1=L=1,(k")+A7!, because Aty (k)= max{AT;_l(k) — Az’;(k),O} ,
At! = max At/(k) and from (4.11) results that Az;(k)=max{Az,(k)- Az, (k),0}=0

kef1,...,K}
for each k=1,...,K, hence A7/ =0 and L=17,(k’).
The right side of the formula (4.64) is equal:
R = max (Azy(k)+7,(k)) = max (7,(k)-7,(k)+7,(k)) = max 7,(k)=7,(k)

ke{1,..K) ke{1,..,K} ke(1,..,K}

and we have obtained: L=R.
For p=2:
L=1,(K)+At/ +At{ =7,(k") + max, AT (k)=
=7, (k )+ker{rll,%,x}(max{AT - AT, (k) 0})

_ker{rllaﬁ}(max{Afl k)— Ar;(k),0}+ T2(k*))

R= max (A7,(k)+7,(k)) = max (z,(k)-7,(k)+7,(k)) =

ke(1,..K} ke{1,.. K}
= max (7, (k') =7, (k) +7,(k)) = max (A7, (k) +7,(k))

From analysis of L and R we obtain, that to satisfy L=R it is required that 3

L Lell,...K}
for which
maX{AT;(ll) - AT;(ll),O} + Tz(k*) = AT;(lz) +7,(,)
that is
max{z, (k") = 7,(L) — 7, (k) + 7, (L,) + 7, (k"), 7, (k ")} = Az (L) + 7, (L)
Hence

r.(L)+7,(,)  (4.65)

max{z, (k') =7, (L) + 7, (L), 7, (k )} =7, (k") -
>0 (theorem assumption),

The equality (4.65) is always true because z,(k’)—7,(l,)
hence 7,(k’)—7,(,)+7,(1,) > 7,(k’) and L=R for I, =1,.
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Let us set p=m=2 and we will prove that formula (4.63) is true for m+1. Let us note
that

L=z,(k)=1,(k)+ D, Ar.=7,,(k)+A7) -7, ,(K)+7,(k)

p p
pe{l LN}

For m+1 we obtain:

and
L=r,(k'")+ max (max{Az,(k)- Az, (k),0}) -7, (k) +7,,,(k') =
max{Az, (k) - AT, (k)= 7, (k") +7,,,(k ) + T, (K),

= 7,(K)+ 7., (k) +7,(k)}

To satisfy L=R itis needed that 3 for which:

L el K}

max{AT (1)~ Az, (1)~ (k)4 7, (K ) +2,(K),
0, (K4 T (K) 4 7,00} = A7, (L) 47,0 (0)

that is
max{z,(k') = 7,(L) = ,,q (k) + 7,0 (1) = 7, (k) + 7,1 (K ) +7,,(K),
~7,(K) 47,4 (k) +7,(K)} = A7, (L) + 7, (L)

Reducing this formula, we obtain:

max{z,.,(L)— 7, (L) +7,(k"),—7, (k") + 7, (K ) +7,(k ")} =
=7,.1(L) = 7,(L)+7,(L)

If weset I, =1, =k then the equality (4.66) is fulfilled. The equality is fulfilled too,
forany [, =1, suchthat 7, ()7, ()27, (k)-7,k).

m

(4.66)

Conclusions from Theorem 4.4:

10

20 For each T™27,(k)+ ) Az + max (TRk(k)—TN(k)) the following

(N ke(1,...,K}

formula is fulfilled: ii( max _ ) 0.

p=1 k=1
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From conclusions 1° and 2° results that for each T, which satisfy condition

1° the following formula is true: Jnax }f'Rk (k) <T™, thatis 7 has no greater value

than Tm» and simultaneously the following condition is fulfilled:
N K
(T'max -7 (k)) =0. We can check condition 2° in time of ® (KN ).

p p
p=1 k=1

4.2.2.2. Cost-profit approximation algorithm

We can present the heuristic (greedy) algorithm MSA.2, which
solves the problem (4.24)-(4.26) (it is equivalent to the problem (4.19)-(4.21)
with constraint (4.23)). We define the notations used inside the algorithm: card(x) -
cardinality of the set x; a,(k) - time instance which is added to 7,(k). We also

define three sets of checkpoints which satisfty some conditions:

Pr(k)={pe{s,..,N}: Az"™ (k) >0} (4.67)
P>(k)={pe{s,.. N}: AT (k) —a,(k) 2 0} (4.68)
Pr(k)={pe{s,.., N}: AT " (k)—a,(k) < 0} (4.69)

Functions Z(-) and L(-) describe "profit" (Z) and "cost" (L) of decreasing Az,™(k)

with value a_(k), s, € P/(k):

Z(a, (k) =a, (k)-card (P (k))+ AT (k) (4.70)
pePy (k)
Lia, (K))=(K-1)- Y. [Azr™(k)-a, (k) (4.71)
pels (k)

Value x, ,:=x,  +4a,(k) (in step 10 of the MSA.2 algorithm) is equal to the sum
of a,(k) values that are determined for all iterations of MSA.2 and for every k and

p. The idea of the algorithm MSA.2 consists of decreasing the value of
OBJ= i iAT;f‘aX(k) by decreasing the value of Az,"(k) for any k and p.

p=1 k=1

To set an examination order vector KO of K objects in the MSA.2 algorithm
we use an object order ObjOrdere{0,...,3} strategy (the 3rd step of the algorithm):
ObjOrder=0 - set elements of KO iteratively, from k=1 to k=K; ObjOrder=1 - set
elements of KO randomly, with uniform distribution on the set {1,...,K};
ObjOrder=2 - set elements of KO iteratively, starting from such a k, which
corresponds to the first greatest, second greatest, ..., the K-th greatest values of the
coordinates of the vector FT; ObjOrder=3 - set elements of KO iteratively, starting
from such a k which corresponds to the first smallest, second smallest,..., the K-th
smallest values of the coordinates of the vector FT.



Z. Tarapata — Models and Algorithms for Knowledge-Based Decision Support and Simulation... 133

Algorithm MSA.2

Given sets: Iy, Ty, IP,, TP, for each k=1,..,K and values
ObjOrder, Strategy;

Initialize: V Vv a(k)=0;
kef1,..,K} pe{1,..,N} F

X, :=(0,; counter:=N;
ke{1,., K} pe{l,..,.N} *F

vV FTHR)=7 () =%(k); v Y AT R)= = (k)

14
ke(1,..,K} pe{1,.,N} P

L. WHILE ( 3 FT(k)>0|(counter>0) DO

ke{1,...,K

2 counter:=0;

3. To determine KO vector using ObjOrder;

3a. FOR k=KO[1l],..,KO[K] DO

4. IF FT(k)>0 THEN

5 Use current Strategy to find s, and ask(k);

6 IF g (k)>0 THEN

7 'max — 'max _ ;
AT ) =AM (k) =, (k)

8. 'max ¢+ — 'max / : A 'max ;
Y g AT )= AT )+ AT ()

9. FT(k) = FT(k)~a, (k) ;

10. xk,sk = xk,sk +ask (k) 7

11. counter:=counter+l; a(k)=0;

12. END IF;

13. END IF;

14. END FOR;
15. END WHILE.

To find values of s,€ P(k) and a, (k)€ (0, min{Ar'max(k),FT(k)ﬂ we use

Strategye{0,...,4} (the 5th step of the algorithm): Strategy=0 - finds such a value sk
and maximal value g (k) for which condition Z(a, (k))>L(a, (k)) is fulfilled;

Strategy=1 - find such a value s and value 4 (k) for which value
Z(a, (k) - L(a, (k) is maximal and positive; Strateqy=2 - find such a value sy N
times and randomly 4 (k) for which value Z(a (k))—L(a,(k)) is maximal and
positive; Strategy=3 - find N times randomly such values sr and a (k) for which
the value Z(a, (k))-L(a,(k)) is maximal and positive; Strategy=4 - like for
Strategy=3 but we draw values st and a_ (k) only one time.

For example, when ObjOrder=0 and Strateqy=0, the OB] will be decreased

when we select such a maximal value of a_(k)e (O, min{AT‘max(k),FT(k)” for any

s,€ P(k) that Z(a, (k))>L(a,(k)). Let us take into account the second row
of Table 4.4 (for k=2). It is profitable to set a;=2=min{max{2,4,3,1}, 2, 2}, because
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when we decrease values of A7™(2) for pe P;(2)={1, 2, 3} then our "profit"

(decreasing the value of OB]J) is equal:
Z(a,(2)) = a,(2)-card (P7(2))+ Y, A7™(2)=2-3+1=7.

peP;(2)

"Cost" is equal L(a,(2))=(3-1)" Z ‘AT“’X (2)‘:2.1 (increasing the value of

pePr (2

OB]J). Afterwards, in steps 7-9 we decrease the value of ATma"(k) and FT(k) with

a, (k) for all P25 In the case of Az ¥ (k)—a, (k)<0 in step 7, we must increase

this value like in step 8. The algorithm tries to decrease the value of OBJ until the
free time FT(k) for all k will be equal to zero or when a_(k)>0 (for which the

condition Z(a, (k))>L(a, (k)) is fulfilled) does not exist for any k and p (variable

counter=0).
Let Ar™ (k)= mlrllv}{rémx—rp(k)}, if 7;)%-7,(k)>0 and AT™(k)=1, if
7, —7,(k)<0. Iteration number Lwrie of the WHILE loop can be estimated as

FT(k)
max | -—5 s
,,,,, A 7v_mm (k)
separate steps of the algorithm is as follows: step 5 - O(IN?), step 7 - O(N), step 8 -
O(KN), steps 9-11 - O(1). Steps 4-14 are realized in the FOR loop K times, hence the

complexity of the algorithm MSA.2 is equal O (LWHILE (K*N +KN? )) :

—‘. It is easy to observe that the complexity of

It is possible to improve the value of the objective function (4.19) (and, in
consequence, (4.24)) and computational time in the MSA.2 algorithm using
a preprocessing step (algorithm MSA.2.0). In the MSA.2.0 algorithm we try to

decrease value of objective function (4.19) by decreasing {V " AT, (k) values (for

each k-th object), to obtain all non-negative values of ATP *(k) (like in the MSA.2

a, (k)

algorithm). Let us note that the method of the value of the *
4th step of the algorithm guarantees, that the value of the cost function will be

equal L(a,(k))=0 (see (4.71)) because of P (k)= . After running the MSA.2.0

selection in the

algorithm, we start the MSA.2 algorithm taking into the initialization step the
values V V. X, V PT(k) and V vV A7 (k) obtained from the

kef{1,...,K} pef1,..,N} ke{l,..., ke{l,..K} pef1,..,N}
MSA.2.0 algorithm. Computat1ona1 complexity of the MSA.2.0 algorithm can be
estimated as follows: external loop FOR realizes K times, number of iteration LwriLe
of the WHILE loop for fixed k is bounded by the value Lwmie (like in the MSA.2
algorithm), step 4 has O(N) complexity, and steps 6-8 - O(N). Hence, the total

complexity of the MSA.2.0 algorithm is equal O(KLyyraN) .
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Algorithm MSA.2.0

Given sets: Iy, Ty, IPy, TP, for each k=1,..,K ;

Initialize: VWV vV a(k)=0; V V x,,=0; Exit:=false;
ke{1,..,K} pe{1,..,.N} ke(1,...,K} pe{l,.,N} "

=

Y FT(e):= (k)= k) ;s VY ATk =T -1 (k)

ke(1,..,K} pe{1,.,N} P 4

1. FOR k=1,..,K DO
2. WHILE Exit=false DO
3. IF FT(k)>0 THEN
4., Find such a minimal wvalue skepl*(k) and maximal wvalue
a, (k)e (0, min{ r{naxN]Af;maX(k),FT(k)}} for which
pe{sy s
condition \v/ AT;maX(k)—ask(k)ZO is satisfied;
pels;,..N}
5. IF a,(k)>0 THEN
6. Vo AT (k) =A™ (k) —a, (k)i
pe{sp....N} k
7. FT(k):=FT (k) —a, (k) ;
8. Xy, =X, Fag (k)i
9. ELSE
10. Exit=true;
11. END IF;
12. ELSE
13. Exit=true;
14. END IF;
15. END WHILE;

16. END FOR;

4.2.2.3. Numerical example of using the algorithms

Presented in Fig. 4.5 are examples of using MSA.1 and MSA.2 algorithms
(without using MSA.2.0) for K=3 objects and N=4 checkpoints. It can be observed
(Table 4.3) that the value of the criterion function (4.19) before using the MSA.2
algorithm is equal to 20 (sum of values in the table excluding the last column) and
after using the MSA.2 algorithm (Table 4.5) equals 14. Table 4.4 presents initial

values of functions AT;maX(k) and FT(k) before running algorithm MSA.2 (it has
been assumed that T™ =7"). Table 4.5 contains final values of these functions,
after running the MSA.2 algorithm. Values of x,, determined by the algorithm are
equal zero excluding two values: x;,=1, x,, =2. Let us note that the same

solution has been obtained solving the GAMS model in chapter 4.2.1.4. Taking into

p
account values of x,, and formula Tp(k):fp(k)+2xki we can obtain modified
i=1

moments of achieving alignment nodes by all objects (Table 4.6). Taking into
account the explanation presented in chapter 4.2.2.1 (after defining algorithm



136 4. Models and Algorithms for Movement Synchronization

MSA.1), values of T;,(k) and geometric distances di,(k)i,+1(k) between nodes

i"(k),i"*'(k) we can calculate modified velocities v " as follows:

iy(k),i,ﬂ(k)

d r+1

\4 4 ok = TR
ke{L,..,K) re0,.,Re—1) i (k)™ (k) T’“(k)_z-’(k)

(@) &k

i(3) B(3) a3} 14(3)
1 020 - »O—90"0-0
in(2) i2(2) 1512) ia(2),
)
(1) in(T) _ (7). ta(1)
1O L »
time
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Fig. 4.5. (a) Node-disjoint vector of the shortest paths for K=3 objects with achieved times of
each N=4 alignment nodes for each object; (b) Results of realization of the MSA.1 (regular
line) and the MSA.2 (dashed line) algorithms

In Table 4.7 results of running the MSA.2.0 algorithm (before running MSA.2)
are shown. From the table results that in this preprocessing step we decrease the
value of the objective function with 4.

Table 4.8 presents final values of functions Az,"*(k) and FT(k) after running

the MSA.2.0 algorithm.
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Table 4.3. Values of functions 7,(k) and 7®% (k) for example from Fig. 4.5a

p R,
> 13147 ®

16 17 19
9 13 16 18
12 14 15 20

—No|w| =
NG =
—_

w

Table 4.4. Initial values of functions Ar}‘qm"‘x (k) and FT(k) (before running algorithm MSA.2)

p
k 1121314 FT(k)
315101010 1
21214131 2
110|122 0

Table 4.5. Final values of functions Az-;max(k) and FT(k) (after running algorithm MSA.2)

k p FT(¥)
1234
315101010 0
210121110 0
110 (1]21]3 0

Table 4.6. Modified moments z';}(k) of achieving checkpoints by all objects (after running algorithm

MSA.2)
P
kI 2 3 4
3] 2 13 16 | 17+1
2| 5+2 | 9+2 | 13+2 | 16+2
1] 7 12 14 15

Table 4.7. Results of running algorithm MSA.2.0

sc | a4, (k) | Z(a, (k) | L(ag (K))
1 0 0 0 0
2 1 1 4 0
3 0 0 0 0

Table 4.8. Final values of functions A’Z‘l;max(k) and FT(k) (after running algorithm MSA.2.0)

p
k 1 2 3 4 FI)
3 5 0 0 0 1
2 1 3 2 0 1
1 0 1 2 2 0
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4.2.3. Experimental Analysis of the Algorithms

In Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9 the average computational time (on
computer with Intel Pentium IV 3GHz processor) in the logarithmic scale [msec]
for the MSA.2 algorithm, with preprocessing (MSA.2.0 before MSA.2 algorithm)
and without it using different pairs of the ObjOrder-Strategy is presented. The size
of the problem (4.24)-(4.26) has been set as follows: values of Ke{l,...,100} and
values of Ne{l,...,100} (values of K are divided into a group with a range 10, values
of N are grouped into two sets: 1 < N < 50; 51 < N < 100). Over 100 000 randomly
generated input data for the problem (4.24)-(4.26) have been examined. To
compare obtained results from the MSA.2 algorithm, problem (4.24)-(4.26) has been
also solved using the GAMS/CONOPT solver (ObjOrder-Strategy=-1- -1).

1y

TN =

[ #]

ST = = = = & GhiSrdsr -

Fne = —

scalhealit iy Tima 1)

<
e

L}

iE
B 1071E 202 Jic3g 10243 =058 BGE JOFd BO23 =08
K [fearmita)

Fig. 4.6. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with
Preprocessing=true (using the MSA.2.0 algorithm), ObjOrdere{0,1}, Strategy€{0,...,4}, Ne{1,...,50};
ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem (4.24)-(4.26)
using the GAMS/CONOPT solver
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Fig. 4.7. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with
Preprocessing=true (using the MSA.2.0 algorithm), ObjOrdere{0,1}, Strategy€{0,...,4}, Ne{51,...,100};
ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem (4.24)-(4.26)
using the GAMS/CONOPT solver
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Fig. 4.8. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with
Preprocessing=false (without using the MSA.2.0 algorithm), ObjOrder€{0,1}, Strategy€{0,...,4},
Ne{1,...,50}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem
(4.24)-(4.26) using the GAMS/CONOPT solver
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Fig. 4.9. Average computational time in the logarithmic scale [msec] for the MSA.2 algorithm, with
Preprocessing=false (without using the MSA.2.0 algorithm), ObjOrdere{0,1}, Strategy€{0,...,4},
Ne{51,...,100}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear optimization problem
(4.24)-(4.26) using the GAMS/CONOPT solver

It can be observed (comparing Fig. 4.6 and Fig. 4.8 or Fig. 4.7 and Fig. 4.9) that
by using the preprocessing step (running algorithm MSA.2.0 before MSA.2) we can
accelerate computational time between a few to twenty times faster than without
the preprocessing step. It results from the fact that in the MSA.2.0 algorithm we try

to decrease the value of the objective function (4.24) by decreasing V Ar;max(k)
p

e{l,.,N}
values (for each k-th object), in order to obtain all nonnegative values of Af;max(k)

(like in the MSA.2 algorithm). Then, the MSA.2 algorithm decreases the number of
iterations. For all pairs of the ObjOrder-Strateqy we have obtained faster
computational time than when using the GAMS/CONOPT solver. We have
obtained the best computational time for the ObjOrder-Strategy: 0-0, 1-0 (also for 2-0
and 3-0).
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Fig. 4.10. Average percentage improvement of the objective function (4.24) value for the MSA.2
algorithm, with Preprocessing=true (using the MSA.2.0 algorithm before MSA.2), ObjOrdere{0,1},
Strategy€{0,...,4}, N€{1,...,50}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear
optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver
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Fig. 4.11. Average percentage improvement of the objective function (4.24) value for the MSA.2
algorithm, with Preprocessing=true (using the MSA.2.0 algorithm before MSA.2), ObjOrdere{0,1},
Strategy€{0,...,4}, N€{51,...,100}; ObjOrder=-1 and Strategy=-1 deal with solving the nonlinear
optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver
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Fig. 4.12. Average percentage improvement of the objective function (4.24) value for the MSA.2
algorithm, with Preprocessing=false (without using the MSA.2.0 algorithm before MSA.2),
ObjOrdere{0,1}, Strategy€{0,...,4}, N€{1,...,50}; ObjOrder=-1 and Strategy=-1 deal with solving the
nonlinear optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver



Z. Tarapata — Models and Algorithms for Knowledge-Based Decision Support and Simulation... 141

:

E

3] Unjordar
L Siritagy -
£ T 5 4
T-; sl &= Il
%‘ ] .__'__g.:ﬁ_—'—;#-__—* == |
A e — ; & b
£ - — - — o
; ¢ T S al

.% 0 — —:_
P .l Y 5.
& "Ef#'_" wo | o

P {freminta

Fig. 4.13. Average percentage improvement of the objective function (4.24) value for the MSA.2
algorithm, with Preprocessing=false (without using the MSA.2.0 algorithm before MSA.2),
ObjOrdere{0,1}, Strategy€{0,...,4}, N€{51,...,100}; ObjOrder=-1 and Strategy=-1 deal with solving the
nonlinear optimization problem (4.24)-(4.26) using the GAMS/CONOPT solver

In Fig. 4.10, Fig. 4.11, Fig. 4.12, Fig. 4.13 the average percentage improvement
of the objective function (4.24) value for the MSA.2 algorithm, with or without
preprocessing (MSA.2.0 algorithm) using different pairs of the ObjOrder-Strategy is
presented (ObjOrdere {0,1}, because for the ObjOrdere {2,3} similar results have been
obtained). The percentage improvement value, PI, of the objective function value is

calculated as follows: PI :%-100%, where OBJo, OBJ1 - values of the

0
objective function (4.24) before and after running the MSA.2 algorithm,

20-14 100% =30% for data have been considered

respectively. For example, PI =

in chapter 4.2.2.3. It can be observed that for K>20 almost for all pairs of the
ObjOrder-Strategy in the MSA.2 algorithm percentage improvement of the objective
function value is better than for using the GAMS/CONOPT solver. This difference
grows when the value of K grows.

We have obtained the best results using the preprocessing step (Fig. 4.10 and
Fig. 4.12) and the following pairs of the ObjOrder-Strategy: 0-1, 1-1 (also for 2-1 and
3-1). Percentage improvement of the objective function (4.24) value for the best
pairs of the ObjOrder-Strategy is equal from 65% to 80%.

4.3. Multicriteria Movement Synchronization Scheduling (2CMSS
problem)

In chapter 4.2.1.1 two categories of criteria for movement of K objects have
been defined: C.1 - time category and C.2 - "distance" category. We have taken
into consideration the first type of category and we have proposed algorithms for
solving one of the problems from this category (chapter 4.2.2).
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In this chapter we present one of the formulations of the optimization
problem for multicriteria movement synchronization scheduling of K objects
taking into account criteria C.1.2 from (4.14) and C.2.1 from (4.15).

4.3.1. Definition of the 2CMSS Problem

We consider the following two-criteria optimization problem (taking into
account criteria C.1.2 from (4.14) and C.2.1 from (4.15)): in the given graph G (see
definition in chapter 4.2.1.1) to find such node-disjoint paths Ix (see (4.1)) visiting
specified nodes belonging to IPx (see (4.5)) for each k-th of K objects and to

b r=0,R, -1, k=1,K that

determine such velocities vf,

(k)™ (
K K
> t(I,) =D 7% (k) > min (4.72)
k=1 k=1
N K
ZkZ(T;“aX - Tp(k)) — min (4.73)
p=1 k=1

with constraints: (4.20) and (4.21).
Let us note again that (4.72)=(4.14) and (4.73)=(4.15).
We can formulate this problem as two-criteria optimization problem (nonlinear,
discrete-continuous) of determining the K shortest node-disjoint paths via some
alignment nodes in the restricted area (2CMSS problem) as follows (A, H, x,

jnk’

out,, in., a,,, h,, V, M, have been defined in chapter 3.4.2.1, v) describes the

ijr M

velocity of the k-th object on the j-th arc of graph G and it is equivalent to vl’,‘, Y

d; is equivalent to du,w for the j-th arc represented by a pair of nodes (w,w")):
A M K A
dYHE> L X, — min (4.74)

i(g{l}aﬁ [To(l) + ij—b : xbnlj — [To(k) + ii : xbnk]] —min  (4.75)

""" b=1 Up

A

> (out;—ing)x,, =a,, i=1V, n=1,M, k=1K (4.76)
j=1

A M K

Z;Zl:kzlloutijxmk <1, i=1V (4.77)
j=1 n=1 k=

A M K

DD >inx,, <1, i=1V (4.78)
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A M
ZZoutijxjnk <h,, i=1,V, k=1,K (4.79)

=1 n=1

~

A M
> ingx,, <h, i=1,V, k=1,K (4.80)
j=1 n=1
v, SOT(k), j=1,A, k=1,K (4.81)
v, >0, ji=1V,n=1,M, k=1,K (4.82)
X, 20, ji=1,A, n=1,M, k=1,K (4.83)

Let us note that: (4.76)=(3.79), (4.77)=(3.80), (4.78)=(3.81), (4.79)=(3.82), (4.80)=(3.83),

(4.83)=(3.84).

We can isolate two subproblems from the 2CMSS problem:

e NDSP problem: function (4.74) (equivalent to (4.72)), constraints (4.76)-(4.80)
and (4.83) deal with searching for the K node-disjoint paths visiting specified
nodes (represented by matrix A) and omitting restricted areas (represented by
matrix H);

e MS problem: function (4.75) (equivalent to (4.73)), constraints (4.81) (equivalent
to (4.20)) and (4.82) (equivalent to (4.21)) deal with searching for such values of
velocities on each arc belonging to the path for each object to minimize the total

differences between achieving times in all alignment nodes for all objects.
The NDSP problem is the same as NDRP-Sum (defined in section 3.4.2.1) when we

set in NDRP-Sum: d; = i .
Vi

Interpretation of constraints (4.76)-(4.80) and (4.83) have been described in
chapter 3.4.2.1. Constraints (4.81) and (4.82) assure that no stops on each part (arc)
of the path for the k-th object are permitted (velocity must be greater than zero)
and velocity must be no greater than the maximal possible velocity resulting from
technical properties of the k-th object being moved and topographical properties of
the j-th arc.

In the presented optimization problem we have AMK+AK decision variables
and V(MK+K+2)+AK constraints (excluding (4.82),(4.83)). The problem is very hard
to solve (especially for large graphs) even then we can observe that the matrix of
the constraint coefficients (built on the basis of the left sides of the constraints
(4.76)-(4.80)) is totally unimodular and ain, hik (right sides) are integers, hence the
constraint (4.83) can be written as x,, 20 (instead of xjue {0,1}). One of the main

difficulty is the problem is nonlinear.
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4.3.2. Methods for Solving 2CMSS Problem

There are several methods to solve multicriteria problems such as 2CMSS, in
generality (Ehrgott, 1997): hierarchization of objective functions (lexicographic
solutions), metacriterion functions, compromise solutions, methods with threshold
values, etc. Some of them have been described in chapter 3.3.4.

Since the 2CMSS problem consists of two subproblems: NDSP and MS, we
propose to use the two-stage algorithm to solve the 2CMSS problem: at first we
solved the problem NDSP (criteria function (4.74), constraints (4.76)-(4.80) and

(4.83)) by replacing vk by v (k) in (4.74), jzl,_A, k=1,K. After solving this

problem we obtain node-disjoint shortest paths for all objects; it means that for
each (the j-th) arc belonging to a path for each (the k-th) object we obtain the

shortest time-cost arc value equalling . Next, we solved the MS problem

j
o (k)
(criteria function (4.75), constraints (4.81) and (4.82)), which is based on making

a correction (decreasing) of velocity value v, <v;"" (k) for each of the j-th part (arc)

of the path, for each k-th object to achieve a "parallel movement effect" measured
by the value of the function (4.75). This approach corresponds to searching for
lexicographic solutions of the 2CMSS problem. Such a two-stage method for
solving presented problems and such a priority order of optimization criteria are
quite intuitive: at first we have to find the vector of shortest paths for K objects to
set optimal paths, under the assumption that we use maximal possible velocities
on each arc belonging to the path for each object, and next we try to decrease
values of velocities to optimize the second criterion (4.75).

For solving the NDSP problem we may use the SGDP algorithm described in
chapter 3.4.3.1 and for solving the MS problem we may use MSA.1 or MSA.2
algorithms described in chapters 4.2.2.1 and 4.2.2.2.

4.3.3. Numerical Example

In this chapter we present some practical example (corresponding with the
problem from Fig. 4.5) of solving the 2CMSS problem for the following parameters
(see Fig.4.14a): graph G= <VG,AG>, V=V_=16, A= A =120, K=3, N=4, 51=31,

s2=13,53=1,t1 =30, 2 =24, t3 =12, d=10, je{l1,...,A}, i1(1) = 27, ia(1) = 22, 13(1) = 23,
i4(1)= 29, i1(2)= 15, i2(2)= 10, i3(2)= 11, ia(2)= 17 , i1(3)= 2, i2(3)= 4, i3(3)= 5, i4(3)= 6,

—~

om(1)=4.29, vh%(1)=429, vy (1)=429, % (1)=40, oI5 (1)=40,
Uas0(1) =100, v555(1) = Ua(2) =40, v55(2)=40, v5(2)=
Uien0(2)=50, v (2)= U (2)=333, v75(2) =100, v355,(2)=100,

o (3)=5.0, v;“§X(3):1.82, oM (3)=1.82, ©I™(3)=3.33, vI(3)=10.0,

Vg1, (3) =5.0. For all remaining arcs maximal velocities are equal 1.0.
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Taking into account the idea of solving the 2CMSS problem, at first we need
to solve the NDSP problem using the SGDP algorithm and maximal possible
velocities. We obtain K=3 node-disjoint shortest paths visiting alignment nodes
presented in Fig. 4.14b. To show that the problem corresponds with the problem
from Fig. 4.5, let us note that we have obtained the following achieving times of
alignment nodes for the k=2 object (see also Table 4.5) using formula (4.7):

. 10 10 . 10 10
for i1(2)=15: —+-—=5, forin(2)=10: 5+ —+—=5+4=9,
40 4.0 50 5.0

for is(2)=11: 9+ -2 =13, for is(2)=17 : 13+ =16.

25 3.33

All values of times of achieving alignment nodes are presented in Table 4.5.

i3 £(3) i3) ia(3) i(3) B(3) i(3) if3)
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19 20 21 22 23k 424 19 20 21 el 22 b=l 23} {24 |
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iy i(1) ino Jmm
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(a) (b)

Fig. 4.14. (a) Example of graph with indicated source (s,...,53), destination (f3,...,t3) and alignment
nodes (iy(k), p =1,..4, k = 1,...,3) for K=3 objects and N=4 checkpoints for each object; (b) K=3
node-disjoint shortest paths obtained from the SGDP algorithm and visiting alignment nodes i,(k)

Next, having paths for the K objects obtained in the previous stage, we can
solve the MS problem using the MSA.2 algorithm. We have obtained modified
velocities on arcs belonging to the paths for K objects: v5,6(3) = 5.0, v13,14(2) = v14,15(2)
=2.86, the remaining velocities have the same values equal maximal velocities.
Modified times of achieving alignment nodes are presented in Table 4.6. For
example, for the object k=2 we have obtained following modified times (using
formula (4.7)):

for n(2) =15: £+£z7, for i2(2) =10 7+£+£=7+4=11,
2.86 2.86 50 5.0
10 10

for i3(2) =11: 11+-—=15, for iy(2)=17: 15+——=~18.
25 333
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4.4. Summary

In this chapter single- and multi-criteria optimization models and algorithms
of movement scheduling for many objects to synchronize their movement (2CMSS
problem) have been considered. The model consists of two parts: (1) node-disjoint
path planning visiting specified nodes for K objects with a given vector of
intermediate nodes for each one (NDSP problem); (2) movement synchronization
in intermediate nodes (MS problem). The approaches presented in this chapter
give possibilities to schedule synchronous movement of many objects and they are
used in some simulation-based operational training support systems (Najgebauer
et al., 2007b) at the planning stage of action (see also chapter 5.3). It can be shown
that they are very fast (in comparison with GAMS/CONOPT (MSA.2) or
GAMS/CPLEX (SGDP) solvers) and it is very important from the point of view of
simulator reaction time on user interaction. During movement simulation
(movement schedule realization) it is important for movement control and the
reaction to deviations from the determined schedule (Tarapata, 2009a). These
problems are essential especially in CGF or SAF systems (Petty, 1995) and they are
considered in chapter 5 and chapter 6. Since some of the algorithms being
discussed are heuristic (SGDP, MSA.2) it seems to be essential to provide necessary
and sufficient conditions for obtaining optimal solutions.

It is possible to consider many problems for synchronous movement based on
the given approaches: we can modify the problem (4.24)-(4.26) in such a way that
in each alignment node neither the delay nor the acceleration of all objects between
themselves cannot be greater than the fixed value AT, and the criteria function
describes the total time of achieving the destination nodes by all objects:

K N
Z[Tw(k) + Zxk/l) — min
k=

1 i=1

subject to:

14 p
[jer{r},%}(rp(]) + ;x].,ij—(rp(k) + ZXk,ijj <AT, p=1,.,N

i=1

Xt p 20, k1., K p=1..,N

Presented suggestions may contribute to further works.
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The chapter is organized as follows. Chapters 5.2 and 5.3 (based on the
papers (Tarapata 2007b; 2007e; 2008b; 2008c; 2010b)) contain description of
automatization methods of the main battlefield processes (attack, defence and
march) in simulation systems such as CGF. In these chapters, a decision automata,
which is a component of the simulation system for military training, is described as
an example. In chapter 5.4 (based on the papers (Tarapata 2000b; 2000f; 2003a;
2005a; 2010b)) we present methods for movement simulation of individual and
group objects based on the MODSIM simulation language. Presented in chapter 5.5
are some conclusions concerning problems and proposition of their solution in

automatization of decision processes in conflict situations.

5.2. ldentification of Decision Situations

5.2.1. Description and Definition of the Problem

The typical military decision planning process contains the following steps
(see Fig. 5.1):

e estimation of power of own and opposite forces, terrain, and other factors,
which may influence on a task realization,

e identification of a decision situation,

¢ determination of decision variants (Course of Actions, CoA),

e variants (CoA) evaluation (verification),

e recommendation of the best variant (CoA) of the above-stated points, which
satisfy the proposed criteria.

The most important step of the decision planning process is an identification
of the decision situation problem: this problem is that we must find the most
similar battlefield situation (from earlier defined or ensuing situations, e.g. in
knowledge base of battlefield situations, see Fig.1.1) to the current one.
Afterwards, the decision situation being identified is a basis for choosing CoA,
because with each decision situation a few typical CoA frames (templates) are
connected. The decision situation is classified according to the following factors:
own task, expected actions of opposite forces, environmental conditions - terrain,
weather, the time of the day and season of the year, current state of own and
opposite forces in the sense of personnel and weapon systems.

We define space of decision situations as follows:

DSS={SD: SD=(SD,),_, 4} (5.1)

Vector SD represents the decision situation, which is described by the following
eight elements: SD1 - command level of opposite forces, SD> - type of task of
opposite forces (e.g. attack, defence), SD3 - command level of own forces,
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SD4 - type of task of own forces (e.g. attack, defence), SDs - net of squares as

a model of activities (terrain) area SD, = [SD;]iﬂ,..,sm , SD; =(SD;"*)eq, 5

j=1,.,SDg
Identification of
decision situation

amplate of vanant femnlate of vanam ‘ ‘ Temmate ol war@nt |
1 Fd n

Set of action variant templates
related to identified decision, situation.

Sy
5s PRE-SIMULATION
&3

ariil § warant # A 6 ‘ variEnt i ’

Sel of full variants with their estimations

- time and degree of task
realization

- own and enemy lasses

- utilization of munitions and
petral

Criterions of
variant choice

Determination of
the best variant

The best variant of actions
- regions of attack or
defence
- maneuver routes
- intensity of fire for
different weapon systems
- terms of supply of
military material combat
forces by logistics units

Fig. 5.1. Algorithm for selecting the best variant of action (Antkiewicz et al., 2005)

For the terrain square with the indices (i,j) each of the elements denotes: SD;;?’l - the
. g 5,2 . 5,3
degree of terrain passability, SD;” -the degree of forest covering, SD;” - the
degree of water covering, SD;* -the degree of terrain undulating, SD;* -
. . . 5,6 . .
armoured power (potential) of opposite units, SD;” - infantry power (potential)
of opposite units, SD;” - artillery power (potential) of opposite units, SD;* -
coordinates of the square, SD, - the description of own forces: SD, = (SDf)

i=1,.,4 "7

SD! - total armoured power (potential), SDj - total infantry power (potential),
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SDf - total artillery power (potential), SD{ - total air fire support (antiaircraft)

power (potential); SD7- the width of activities (interest) in an area (number of
squares), SDs - the depth of activities (interest) in an area (number of squares).
The set of decision situations patterns is given: PDSS ={PS:PSe DSS}. For

the current decision situation CS, we have to find the most similar situation PS
from the set of patterns. In chapters 5.2.2 and 5.2.3 we present more formal
definitions of "situations similarity".

We have determined the subset of decision situation patterns PDSScs, which
are generally similar to the current situation CS, considering such elements like:
task type, command level of own and opposite units and own units' potential:

PDSS. ={PS=(PS)).., . PDSS:PS,=CS,,i=1,.,4,dist,,,(CS,PS)< APot} (5.2)

potwl
where:

dist,,(CS, PS) = max{|CS{ - PS{|,

=1,.4] (5.3)

and APot - the maximum difference of the potential of own forces (calibration

potwl(

parameter).

5.2.2. Distance Vector Approach

Here, we present the distance vector approach for solving the problem
defined in chapter 5.2.1. We formulated and solved the multicriteria optimization
problem (5.4), which allow us to determine the most matched pattern situation
(PS) to the current one (CS) from the point of view of terrain and military power
characteristics (Najgebauer et al., 2007b):

Z=(PDSS, E-5, Ry) (5.4)
where:
F:PDSS. — R? (5.5)
F.(PS) =(dist,,(CS, PS), dist,,(CS,PS)) (5.6)
4 [ ] P %
dist,,(CS,PS)=>"4-| >.¥"(CS* - PS;*) (5.7)
k=1 i=1 j=1
4
Y A=124>0k=1,.,4 (5.8)
k=1
1
L P\p
dist,,(CS,PS) = Z | 22.(Cs;* - Ps}) (5.9)
i=1 j=1
7
Dp=1,14>0k=5,.7 (5.10)
k=5

I =min{CS,,PS,}, ] = min{CS,, PS,} (5.11)
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(Y,Z)e PDSS_, x PDSS,, :
R, =1dist, (CS,Y)<dist, (CS,Z) A (5.12)
dist ,,(CS,Y) < dist ,(CS,Z)

Parameters g, and A, describes the weights for components calculating the

value of functions dist,; and distyr. The domination relation defined in (5.12)
allows us to choose such a PS from PDSScs, which has the best value of dist:r and
distyet , that is the most similar to CS (non-dominated PS from the Rp point of
view). The idea of the identification of the decision situation and CoA selection is
presented in Fig. 5.2. Application of this method is presented in chapter 6.2 and in
(Antkiewcz et al., 2011b).

! =
Decision patterns; set of PS SIMILAR!WCngi::IS;Eg BETWEEN
DECISION SITUATION PATTERN (PS) [
™. - - | W 1y
—_— = - list LS sI= Y zzﬂ A =1 |,}
I ‘ IE\.I 1| \ -
el S, P8y = _,u,m ,‘; S(L\ =5 | ]
_ The most Course of CURRENT DECISION SITUATION (CS)
similarPSto €S Action ]
|
% 7
4
o Z
Course of Actions ‘ ‘
{CoAs) =

P

Fig. 5.2. The idea of identification of the decision situation and CoA selection
(Antkiewicz et al., 2011b)

5.2.3. Multicriteria Weighted Graphs Similarity (MWGSP) Approach

In this chapter concept of multicriteria weighted graphs similarity and its
application for pattern matching of decision situations is considered. The approach
extends known pattern recognition approaches based on graph similarity with two
features: (1) the similarity is calculated as structural and non-structural
(quantitative) in a weighted graph, (2) choice of the most similar graph to graph
representing pattern is based on a multicriteria decision. Application of the
presented approach for pattern recognition of decision situations has been
described in (Tarapata, 2007b; 2008b) and in chapter 5.2.3.5.
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5.2.3.1. Structural objects similarity - a short overview

Object similarity is an important issue in applications such as pattern
recognition. With given a database of known objects and a pattern, the task is to
retrieve one or several objects from the database that are similar to the pattern.

If graphs are used for object representation this problem turns into
determining the similarity of graphs, which is generally referred to as graph
matching. Standard concepts in graph matching include (Farin et al., 2003;
Kriegel & Schonauer, 2003): graph isomorphism, subgraph isomorphism, graph
homomorphism, maximum common subgraph, error-tolerant graph matching
using graph edit distance (Bunke, 1997), graph’s vertices similarity, histograms of
the degree sequence of graphs. A large number of applications of graph matching
have been described in the literature (Bunke, 2000; Kriegel & Schonauer, 2003;
Robinson, 2004). One of the earliest applications was in the field of chemical
structure analysis. More recently, graph matching has been applied to case-based
reasoning, machine learning planning, machine vision, semantic networks, social
networks, conceptual graph, monitoring of computer networks, synonym
extraction and web searching (Bunke, 2000; Blondel et al., 2004; Champin & Solnon,
2003; Kleinberg, 1999; Kriegel & Schonauer, 2003; Melnik et al., 2002; Robinson,
2004; Senellart & Blondel, 2003; Tarapata & Kasprzyk, 2009c; 2010e; Tarapata et al.,
2010d). They include recognition of graphical symbols, character recognition,
shape analysis, terrorist network analysis, three-dimensional object recognition,
image and video indexing and others. It seems that structural similarity is not
sufficient for similarity description between various objects. The arc in the graph
gives only binary information concerning connection between two nodes. And
what about, for example, the connection strength, connection probability or other
characteristics? Thus, the weighted graph matching problem is defined, but in the
literature it is relatively rarely considered (Almohamad & Duffuaa, 1993;
Champin & Solnon, 2003; Tarapata, 2007b; Umeyama, 1988) and it is most often
regarded as a special case of graph edit distance, which is a very time-complex
measure (Bunke, 2004; Kriegel & Schonauer, 2003). Therefore, we define
a multicriteria weighted graph similarity decision problem (MWWGSP) and we show
how to use it for pattern recognition (matching) of decision situations (PRDS) in
the decision automata, which replaces commanders in simulators for military
trainings (Najgebauer et al., 2007b).

5.2.3.2. Definitions of structural and quantitative similarity measures between
weighted graphs
Let us define weighted graph WG as follows:
WG = <G' {ﬁ(n)}ie{l,...,LF} ’ {hj(a)}je{j(;...,LH}>

neNg

(5.13)
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where: G - Berge’s graph, G =<NG,AG>, Ng, Ac - sets of graph’s nodes and arcs,
A c{{n,n') :n,n'e N}, f.:N;—R" - the i-th function described on the graph’s
nodes, i=1,..LF, (LF - number of node’s functions); h x A; — R" - the j-th function

described on the graph’s arcs, j=1,..LH (LH - number of arc functions).

Let two weighted graphs Ga and Gg be given. We propose to calculate two
types of similarities of the Ga and Gg: structural and non-structural (quantitative).
To calculate structural similarity between Ga and Gg it is proposed to use the
approach defined in (Blondel et al., 2004). Let A and B be the transition matrices of
Ga and Gg. We calculate the following sequence of matrices:

_ BZA"+A"ZB
“ Bz AT+ATZE| "

(5.14)

where Zo=1 (matrix with all elements equal 1); xT - matrix x transposition; ||x||F—

g 1p
Frobenius (Euclidian) norm for matrix x, ||x||F = /Zin , np - number of matrix

i=1 j=1

rows (number of nodes of Gg), na - number of matrix columns (number of nodes of
Ga). Element z;; of the matrix Z describes the similarity score between the i-th node
of Gp and the j-th node of Ga. The essence of the similarity of the graph nodes is the
fact that two graph nodes are similar, if their neighbouring nodes are similar. The
greater value of z; the greater the similarity between the i-th node of Gg and the
j-th node of Ga. We obtain structural similarity matrix S(Ga,Gg) between nodes of
graphs Ga and Gg as follows:

5(G,,Gy) = [5']']

ij dnpxn

=lim Z,, (5.15)

Some computation aspects of calculation S(Ga,Gp) have been presented in
(Blondel et al., 2004). We can write (5.14) more explicitly by using the
matrix-to-vector operator that develops a matrix into a vector by taking its
columns one by one. Therefore, we can write the equality (5.14) as follows:

. _ (A®B+AT®B'),
“|(A®B+AT®B")z|
F

(5.16)

where "®" denotes the Kronecker product (also denoted tensorial, direct or
categorial product). Unfortunately, iteration zx+1 does not always converge.
Authors of the work (Melnik et al., 2002) showed that if we change the formula
(A®B+A"®B")z, +b

(516) for Zyy = H(A@B-I-AT ®BT)Zk +b‘

, then formula (5.16) converges for b>0.

F

Having matrix S(Ga,Gs), we can formulate and solve an optimal assignment
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problem (using e.g. the Hungarian algorithm) to find the best allocation matrix

X =[x;], ., of nodes from graph describing Ga, Gs:

npXn,

ds(G,,Gy) iisq +X; — max (5.17)
=1 j=1
with constraints:
Sx <1, j=Tn, (5.18)
=1
lej <1, i=1n, (5.19)
v o ox;€{0,1} (5.20)

ie{1,...,ng} je{l,..n,}

The ds(Ga,Gg) describes the value of structural similarity measure of Ga and Gp
(Fig. 5.3). Let us note that we can easily adopt centrality measures from social
networks to use them or their combinations instead s;; (Bartosiak et al., 2011).

To calculate non-structural (quantitative) similarity between Ga and Gg we
should consider the similarity between values of node and arc functions (nodes and
arcs quantitative similarity), (Tarapata, 2007b). To compute quantitative similarity of

nodes we propose to create a vector v(GA,GB)=<Vl,...,VLF> of matrices, where
V. = [vif(k)]ngw , k=1,...,LF, describing similarity matrix between nodes of Ga and
Gg from the point of view of the k-th node’s function (f;*: N ¢, 2 R" for Ga and
fi :Ng, = R" for Gp) and Uij(k)z“ JAOES A ])H describes the "distance" between

the i-th node of Gp and the j-th node of Ga from the point of view of £’ and f£",

respectively. We can apply a norm with parameter p >1 as distance measure:

p 1p
THORIA B VRO A6} [Z\fk, )= £2.3) \]

(5.21)
where £ (), f..() describe the r-th component of the vector being the value of £
and f;”, respectively.

Next, we compute for each k=1,...,.LF normalized matrix Vk :[vq(k)] , where
vv(k) =v;(k) / HVk HF . This procedure guarantees that each v;(k)e [0,1]. Finally, we

compute the total quantitative similarity between the i-th node of Gp and the j-th
node of Ga as follows:

Eij:i,y-v;(k), A=l Y _4el01] (5.22)
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Fig. 5.3. Examples of weighted graphs with a single function described on the nodes (set of

functions described on the arcs is empty) and their structural (5(Ga,G)) and quantitative (W(GA’G) )

similarity matrices. Dark filled cells describe ones, which create optimal assignment of the nodes of
Ga to nodes of Ge {Gs, G¢, Gp, Gg}

The don(Ga,Gs) nodes quantitative similarity measure of Ga and Gg we compute

by solving the assignment problem (5.17)-(5.19) substituting —v; for sj (because of
that the smaller value of v; the better) and don(Ga,Gg) for ds(Ga,Gg) in (5.17).

An example of calculations similarity matrices between nodes of graphs and
similarity measures ds and don between graphs are presented in Fig. 5.3 and in
Table 5.1. Let us note that the best structural matched graph for Ga is Gsp
(ds(Ga,Gp)=1.423 is the maximal value among values of this measure for other
graphs) but the best quantitative matched graph for Ga is Gc (don(Ga,Gc)=0 is
a minimal value among of values of this measure for other graphs). The question
is: which graph is the most similar to Ga : Gp or Gc? A method for solving the
problem and to answer the question is presented in chapter 5.2.3.4: we have to
apply a multicriteria choice of the best matched graph to Ga.

We can obtain arcs quantitative similarity measure dga(Ga,Gs) by analogy to
don(Ga,Gp): we build a vector e(GA,GB)=<E1,...,ELH> of matrices, where
E, =[e;(k)],., <, - k=1,....LH (ma, mp - number of arcs in Ga and Gg) describing the

similarity matrix between arcs of Ga and Gp from the point of view of the k-th arc

function (I':A; — R" for Ga and I :A, —R" for Gg), ei].(k)zuhf(i)—hf(j) g

- LA, * . . .
next e:j(k) =e; (k) / HEk HF and e; = kZﬂ: - e;(k), z =1, kzlL 4, = 0. Substituting in
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5.17) —e; for sij, dga(Ga,Gg) for ds(Ga,Gp) and solving (5.17)-(5.19) we obtain
doa(Ga,Gs).

Table 5.1. Values of similarity measures between G4 and each of the four graphs from Fig. 5.3

Gmph G ds(GA,G) dQN(GA,G) 0.5ds(GA,G) - 0.5dQN(GA,G)
Gs 1.423 0.5 0.462
Gc 1.412 0 0.706
Gp 1.412 0.25 0.456
Gt 1.225 0.5 0.362

Let us note that it is possible to determine a single quantitative similarity

measure for Ga and Gg. To this end, we use transformation of graph G =<N ,A>
into a temporary graph G = <N*,A*> as follows: N =NUA, A"cN xN and

\ ( 3 (v,x)=a=(v,a)e A*)v( 3 (x,v)=a=>(a,0v)e A*) (5.23)

veN,ae A \xeN xeN

If G was a weighted graph then in G" we attribute the arc and node functions
from G to appropriate nodes of G (that is to nodes and arcs from G). Using this

procedure for Ga and Gp we obtain G, and G,. Next, for G, and G, we can
calculate a quantitative similarity measure d,\(G,,G;) of nodes. Example of

constructing G" from G is presented in Fig. 5.4.

fi(1)
fi(1) F(2) ) m12)  h@)
(1 - 1-2 - 2
1 ~hy(1.2pm 2 | 7
h1(1,3) M(2.3) J, f1(_1.3) I
hi(1.4) ~ L ] hi(1,4) 1-a i 23| hef2.3)
v 3 : ) i
Y my4,3) ‘ .‘
4 1 f1(3) i o
f1(4) ‘ d,, | - 4:3 3
f;(4) h(4.3) (3)

Fig. 5.4. Transformation of G (left-hand side) into G (right-hand side)

5.2.3.3. Epsilon-similarity of weighted graphs
At this moment, we propose another view on the quantitative similarity

between weighted graphs (Tarapata, 2007b).
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Definition 5.1
Let us two weighted graphs:

WG, =(G, =(Va, E) Af*(m}ey,, @) and WGy =(Gy =(Vy, Eg) A f ()}, D)
be given and f*:V, - R, f*:V, >R.
We say that node xe 'V, is (f,&)-similar to node ye V,, €20, if
frxeld-e)-f'y); A+e)- fi]or fiy)el-€)- f(x); 1+&)- f(x)].

We can use the definition of (f€)-similarity of nodes to construct
(f,6)-similarity measure between graphs Ga and Gg. To this end we define the

binary similarity matrix between nodes of Ga and Gg as follows: V'(g) = [Z)Z(S)]
and vf’j(e‘):l if fA(j)e[(1-¢€)-f°(i); (1+¢€)- f°(i)] or
fPiel(-e)- () A+e)-fA()], ieVy, jeV, and ov;(e)=0 otherwise.

npXi,

Next we compute vf’j*(e):vfj(g)/HVb(g)

., and compute do\(G,,G;) solving the
assignment problem (5.17)-(5.19) by substituting vf}(e) for sij and dg,y(G,,G;) for

ds(Ga,Gs) in (5.17). This idea may be easily extended on a set of node functions.

The idea of the (f,&)-similarity is presented in Fig. 5.5. Weighted graphs Ga
and Gp with a single function described on the nodes are defined in Fig. 5.3. We
obtain, for example:

v;,(6=1)=1 because f'(3)=1e[(1-1)- f(1); (1+1)- f°(1)] that is
f4(3)=1€[0; 2-2];

v, (6=0.34)=1 because f°(3)=2e[(1-0.34)- f*(4)=3; (1+0.34)- f"(4)=3]
thatis f"(3)=2€[0.66-3; 1.34-3].

G,q Gﬂq
1 1 1 0] 1 0 0 ()
| 1] 1| a BN 1|1
Gg Geg :
HEEEN o | 1 B 1
1 1 1 0 1 (0] 0 1
dioy (G Gy) = 4 doy 1G4,y =3

Fig. 5.5. The idea of the (f,&)-similarity between nodes of G4 and Gg. Binary matrices V?(¢) for two
values of €are presented. Filled cells describe node-to-node assignment of Ga to G, which create an
optimal assignment
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5.2.3.4. Formulation of the multicriteria weighted graphs similarity problem
(MWGSP)

Let us accept SG={G,,G,,...,G,,} as a set of weighted graphs defining certain

objects. Moreover, we have a weighted graph P that defines a certain pattern
object. The problem is to find such a graph G° from SG that is the most similar to P.
We define this problem as a multicriteria weighted graphs similarity problem
(MWGSP), which is a multicriteria optimization problem in the space SG with
relation Rp:

MWGSP =(SG, F, R,) (5.24)
where:
F:5G— R?, F(G)=(ds(P,G),dyy(P,G),dyu(P,G)) (5.25)
(Y,Z)e SGxSG: dy(P,Y)=dy(P,Z) A
R, = doy(P,Y) < doy (P, Z) A (5.26)
do\(P,Y) < dy, (P, 2Z)

Domination relation Rp (Pareto relation between elements of SG) gives
possibilities to compare graphs from SG. Weighted graph Z is more similar to P
than Y if structural similarity between P and Y is not smaller than between P and Z
and, simultaneously, both quantitative similarities between P and Y are not greater
than between P and Z. There are many methods for solving the problem (5.24)
(Eschenauer et al., 1990): weighted sum (scalarization of set of objectives),
hierarchical optimization (the idea is to formulate a sequence of scalar optimization
problems with respect to the individual objective functions subject to bounds on
previously computed optimal values), trade-off method (one objective is selected
by the user and the other ones are considered as constraints with respect to the
individual minima), method of distance functions in L,-norm (p =1) and others.

We propose to use the scalar function H(G):SG — R as a weighted sum of

objectives:

H(G)=a,-dy(P,G)+ - (—doy(P,G)) + &, - (=dos(P, G))

(5.27)
o,0,,0,20, a+a,+a,=1

Taking into account (5.27) the problem of finding the most matched G° to
pattern P can be formulated as follows: to determine such a G’e€ SG, that
H(G’)=maxH(G). In the last column of Table 5.1 the scalar function H(G) is

GeSG

defined as follows:

H(G)=a,-ds(P,G)+ &, - (—d oy (P, G)) + &, - (—d, (P, G)) (5.28)
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where o, =, =05, o, =0, P=G,, SG=1{G,;,G.,G,,G,}. Let us note that the
best matched graph to Ga being the solution of MIWGSP with the scalar function
H(G) is Gc (H(G=Gc)=0.706).

Let us estimate computational complexity of the weighted graphs similarity.
Let n=max{na,np}, m=max{ma,ms}. To compute structural similarity measure (5.17)
we must first calculate matrix (5.15) and next solve the problem (5.17)-(5.20).
Computation of matrix (5.15) takes a time O(n237°) because in practice k<<n (using
matrix multiplications algorithm given by Coppersmith and Winograd with an
asymptotic complexity of O(n?37¢), (Cormen, 1994)). Solving the problem
(56.17)-(5.20) takes a time O(n3) using implementation of Hungarian algorithm given
by Edmonds and Karp, so we obtain total complexity of these two steps O(n3). To
compute nodes quantitative similarity measure dony we must first compute matrix

V:[Ezj] in time O(LF-n’) and then solve the modified problem

(6.17)-(5.20) in time O(n®), so we obtain total complexity of these two steps
O(LF-n*+n”). For calculate arcs quantitative similarity measure doa we obtain
complexity by analogy like for dgy and we have O(LH-m’+m’). Finally,
computational complexity of total graph measure (5.27) is equal
O(LF -n* +n’ +LH -m* +m’).

5.2.3.5. Application of weighted graphs similarity to pattern recognition of
decision situations
In the presented proposition the weighted graphs similarity approach to the
identification of the decision situation is used. It consists of three stages:

1.  Building weighted graphs WGT(CS), WGD(CS) and WGT(PS), WGD(PS)
representing decision situations: current (CS) and pattern (PS) for
topographical conditions (WGT) and units (potential) deploying (WGD);

2. Calculation of similarity measures between pairs: WGT(CS), WGT(PS) and
WGD(CS), WGD(PS) for each PSe PDSS;

3. Selecting the most similar PS to CS using calculated similarity measures.

Stage 1
The first stage is to build weighted graphs WGT and WGD as follows:

WGT = <GT = <NGT’ AGT> ’ {fkT(n)}ke{l ..... 5}> , WGD= <GD = <NGD’ AGD> ’ {ka(n)}ke{l,...,4}>

neNgr neNgp

where G (GT or GD) - Berge’s graphs, G = <NG,AG>, Ng, Ag - sets of graph nodes
and arcs, A; c{(n,n'> :n,n'e Ng}. Weighted graphs WGT and WGD describe
decision situations (current CS and pattern PS). Each node n of GT and GD
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describes terrain cells (i,j)=nn with non-zero values of characteristics defined as
components of SD; from (5.1) and . {1V ) fl(n)=SD)*,  fl(n)=SD}*

ij 7/ ij 7

vV fo(m)=SD;**, fP(n)=SD;*. Two nodes x,ye Ng, (for x,yeNg by

ke(1,...3}

analogy) are linked by an arc, when cells represented by x and y are adjacent (more
precisely: they are adjacent cells that take into account the direction of action, see
Fig. 5.6). For example, the terrain can be divided into 15 cells (3 rows and 5
columns, left-hand side, see Fig. 5.6). The units are located in cells (denoted by
circles and Xs). Structural representation of deployment of units is defined by the
graph GD. Let us note that similar representation can be used for topographical
conditions (single graph for one of the topographical information layer: waters,
forests, passability or single graph GT for all of this information, see Fig. 5.6,
right-hand side).

Stage 2

Having weighted graphs WGD(CS) and WGD(PS) (WGT(CS) and WGT(PS))
representing the current CS and the pattern PS decision situations (for units
deploying) we use the procedure described in chapter 5.2.3.2 to calculate the
structural and quantitative similarity measures for both graphs.
We obtain for WGD:

ds(WGD(CS), WGD(PS))=dg (CS, PS) , don(WGD(CS), WGD(PS))=dp(CS, PS)
and for WGT:
ds(WGT(CS),WGT(PS))=dg (CS, PS),, don(WGT(CS),WGT(PS))=dp,, (CS, PS).

A P
< cs (3)—»8) P
2 « i L=t Y
B 0|0 | L ¢ ¥ 3
= 0 ‘ ﬁ {2 18 ] :l b N j
.§ X X \ T 4 : A » ‘
U - 4 1 = 1 1
® 1) ry 1| s f
GD Ln _ — GT
l. em - - -

Fig. 5.6. Deployment of units and their structural (graph GD) representation (left-hand side) and
terrain covering (growth) and its structural (GT) representation (right-hand side). Circles (O) and
crosses (X) describe two types of units

Stage 3
We formulate problem (5.24), separately for WGT and WGD, where:
SG:=PDSS, F(G):=Fp(PS), dy(P,G):=dg(CS,PS), dyoy(P,G):=d(CS,PS) for WGD
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and F(G):=Fr(PS), dy(P,G):=ds(CS,PS), dy\(P,G):=d}y(CS,PS) for WGT. Next, we
define the scalar functions (5.27) to solve the problem (5.24) for WGD and WGT:

Hy ()= dg () + 0 - (=doy () (5:29)

and
Hy()=7ds () + 7 (=dgu()) (5.30)

Having Hp(PS) and Hr(PS) we can combine these criteria (as in (5.27)) or set

threshold values and select the most matched pattern situation to the current one.

This process requires "rich" knowledge base of pattern situations in order to better

learn of the MIVGSP algorithm.

Concept of MIWGSP can be also used to estimate real realization of course of
action (Antkiewicz et al., 2009d):

e we define formation of conflict side using network representation from (5.13);

¢ taking into account (5.13) we define pattern formation PF of conflict side; the PF
is predicted (or demanded) formation which should be achieved after actions;

e after simulation of course of actions s; (i=1,..., N) we obtain ASF(s;) formation for
each i=1,..., N;

* we calculate structural d,(PF,ASF(s;)) and quantitative d,,(PF, ASF(s;))
similarity measures between PF and ASF(si) using procedure described in
chapter 5.2.3.2;

e we can solve MIWWGSP defined in chapter 5.2.3.4 to find the best s, course of
action from the point of view of its formation similarity to demanded PF
formation.

5.2.3.6. Numerical example

An example of using the approach presented in chapter 5.2.3.5 to find the
most matched pattern decision situation to the current one is presented in Fig. 5.7
and in Table5.2. Results of calculations Hp(PS) are presented for each

PSe PDSS . ={PS,, ..., PSs}. Only function f;"(n)=SD;* (" (n) for pattern PS)
is used from WGD to compute quantitative similarity of nodes (see chapter 5.2.3.2)
because all units have the same type. Thus, vector v(WGD(CS),WGD(PS)) of
matrices has one component V; =[v;(T)]y_ . wingy e - Function £ (n) describes

coordinates of node n (the left-lower cell has coordinates (1,1)). The norm from
1/2
(5.21) has the form of: Hf4 H [Z‘ﬁl (D)= f( ‘ J and it describes the

geometric distance between nodes i€ Ngprs) and je Nepcs). Let us note that for
weights &, =0, &, =1 values in Table 5.2 (for the row PS;) describes dSN(CS, PS))
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and for @, =1, &, =0 describes d(CS,PS,). The best matched PS to CS is PS;
(taking into account dg and dp)).

The process of optimal selection of weights can be organized as follows: we
build a learning set {CS;, PDSSi}i=1,....s and for different values of weights experts
estimate whether, in their subjective opinion, CS; is similar to PS’€PDSS;
determined from the procedure. The combination of weight values, which are

indicated by majority of experts, is the optimal combination.

Some other applications of the MIWGSP problem are presented in chapter 6.3.

PSS B8 P83 PS4
0|0 (@] (8] o|0 0|0 0
0 Q 0 O 0 (0] 0|0 (8]
0 (8] 0 0 0 0 0|0 O O
G, 1| 3@ 6 BT B Sr=—=psy B a - B
i i 1y .3 1 T s
a, 5 27 5 2 § L b\l 5 2 ‘H
| 1 t 1 1 }
14 ¥L i Bk 1 oL — i) ¥ al ¢
PSs PSi PST PS
................ 0 " — _0_ LI 1= s
0 6] o|o o)
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0 0 0|0 ¢]
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0 0 olo 0 0
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i A Ty o
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Fig. 5.7. The current situation CS with graph GD(CS) and eight pattern situations PS; (i=1,...,8) with
graphs GD(PS;) describing structure of units deployment. Patterns 1-5, 2-6, 3-7 and 4-8 have the
same structure, but cells for patterns 5,..,8 have a greater size than for patterns 1,...,4

Table 5.2. Values of the scalar function Hp(PS;) combining structural (weight c1) and quantitative
(weight o) similarity measures between GD(CS) and GD(PS;) from Fig. 5.7. The best (maximal)
values in the columns are denoted in bold

Pattern Weights (o ; o)
PS; (0;1) | (0.33;0.67) | (0.50.5) | (0.67;0.33) | (1;0)
PS; -0.094 0.283 0.463 0.800 1.527
PS, -0.370 0.283 0.593 0.870 1.504
PS; -0.478 0.157 0.360 0.726 1.254
PS, -0.233 0.176 0.467 0.827 1.527
PSs -0.474 0.120 0.461 0.824 1.527
PSs -0.706 0.032 0.378 0.761 1.504
PS; -0.63 0.070 0.279 0.631 1.254
PSs -0.508 0.047 0.415 0.793 1.527
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5.3. Decision Automata for a March

In chapter 5.2 elements of decision automata for an attack, which replaces the
commander at the battalion level, have been described. In this chapter we present
the decision automata for marching which execute two main processes (Tarapata,
2007e): the march planning process and direct march control. The march planning
process relating to the automata includes the determination of: march
organization, paths for units and detailed march schedule for each unit in the
column. The direct march control process contains such phases like command,
reporting and reaction to fault situations during the march simulation. The
automata is implemented in the ADA language and it represents a commander of
battalion level (the lowest level of trainees is brigade level). It is a component of
distributed interactive simulation system SBOTSS Zlocien for CAXes (Computer
Assisted Exercises) (Najgebauer, 2004a; 2004b). Some of the applications are
presented in chapter 6.1.

5.3.1. The March Planning Process

5.3.1.1. Description of the problem

The march planning process relating to the automata contains the
determination of such elements as: march organization (units order in the march
column, count and stopping points), paths for units and detailed march schedule
for each unit in the column. Algorithms, which carry out the decision planning
process described below, are presented in chapter 5.3.3.

The decision process for the march starts at the moment ¢, when the battalion
id receives the march order SO(id, t) from a superior (brigade) unit. The structure
of the SO(id, t) is as follows:

SO(id, t) = (t,(id, t), ts(id, t), MD(id, t)) (5.31)

where: SO(id, t) - superior order to march for battalion id; t,(id,t) - readiness time
for the unit id; t,(id,t) - starting time of the march for the unit id; MD(id,t) -
detailed description of the march order. Definition of the MD(id) (we omit f) is as

follows:
MD(id) = <S(id),D(id), RP(id), IP(id) = (inp(id),itp(id))p=m> (5.32)

where: S(id), D(id) - source and destination areas for id, respectively; RP(id) - the

rest area for the id unit (after twenty-four-hours of marching), optional; IP(id) -
vector of checkpoints for the id unit (march route must cross these points), in,(id) -
the p-th checkpoint, in, (id)e W, UW,, W1, W2 defined in chapter 2.3, in1(id)=PS(id)
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is the starting point of the march (at this point the head of the marching column is
formed) and it is required, other checkpoints are optional, ity(id) - time of
achieving the p-th checkpoint (optional); NIP - number of checkpoints. After the id
unit (battalion) receives the brigade commander’s order to march, the decision
automata starts planning the realization of this task. Taking into account SO(id,t),

for each unit id” (of company level and equivalent) directly subordinate to id the
march order, MDS(id’) is determined as follows:

MDS(id") = <S(id'),D(id'), PS(id"), PD(id"), RP(id"), p(id', S(id'),D(id'))> (5.33)
where: 5(id'),D(id') - source and destination areas for id’, respectively,
S(id") c S(id), D(id") c D(id); RP(id’) - rest area for the id" unit (after twenty-four-
hours of marching), RP(id") c RP(id), optional parameter; PS(id") - starting point
for the id” unit, the same for all id’eid and PS(id')=in,(id)e W, UW,; PD(id") -

ending point of the march for the id” unit, the same for all id’eid and
PD(id"Ye W, UW,; u(id',S,D) - the route for the unit id" from the region S(id")=S to

region D(id")=D, ,u(id',S,D):(w(id',m),v(id',m))mzm, w(id',m) - the m-th
node on the path for id’, w(id',m)e W,uW,, S,DcWiuW, and w(id',1)e S ,
w(id',LW(,u(id',S,D)))e D; LW(u(id',S,D)) - number of nodes (squares or
crossroads) on the path y(id’,S,D) for id” unit; v(id',m)- velocity of the id” unit on

the arc starting in the m-th node.

5.3.1.2. Models of movement plans

The movement models define following movement plans:

(@) from point (region) to point (region);

(b) visiting selected points (regions);

(c) omitting selected points (regions, obstacles);
(d) inside or outside selected region;

(e) off-roads only;

(f) on-roads only;

(g) combined on- and off-roads.

They use following criterions for paths planning: time minimization, distance
minimization, camouflage degree maximization. We define general problem for
tinding the best route which includes problems (a)-(g). We formulate problem for
extreme path finding for id unit which realize movement plans (a)-(g) as follows:

in the network S°= <GZ,‘P1(t)u‘Pz(t),é’z(t)u{ll,lz,l3}> (defined in chapter
2.3) to find a such path ,u*(id, S,D)e M(id, S,D) , for which

K(4'(id,S, D))= extr  K(u(id,S,D)) (5.34)

14(id,S, D)eM(id, S, D)
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where: K( u(id, S, D)) - "cost" of the path u(id,S,D),

K((id, S, D)) = LW(”%D)H ((w(id, m), w(id,m+1))) (5.35)

m=1
M(id,S,D) - set of acceptable paths from the region S to the region D for id unit,
1((w(id, m),w(id, m+1))) - arc (w(id,m), w(id,m+1)) cost function.
It is important to note that path (id,S,D) may consist of sequences of nodes

from Zi(t) and Z(t) defined in chapter 2.3 (when we accept descending from the
road on the squares (if it is possible) and vice versa), see Fig. 5.8.

i
=

BE

¥

Lt

Fig. 5.8. The idea of hybrid path in the Zlocien system. The path consist of 5 (2+3) squares and 5
parts of road

If we want:
e to minimize movement time, then in (5.35) I((00))=1((00), and in (5.34)

extr=min, where I function defined by (2.15);

e to minimize geometrical length (distance) of the path then in (5.35)
1((00) =L ((09) and in (5.34) extr=min, where I, function defined by (2.20);
e to maximize degree of camouflage for determined path then in (5.35)

1((00)=1((09) and in (5.34) extr=max, where I3 function defined by (2.21).
Moreover, depending on kind of the movement plan (a)-(g), we define the set
M(id,S,D) of acceptable paths in the different way:

e for the case (a):

M(id,S,D)={u(id,S, D) = (w(id, m),v(id,m)): S c W*,D c W*} (5.36)
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but if we determine path from the point (node) to the point (node) then S=1
and B= 1. It is important to emphasize, that for each me {1,..., LW (u)-1},
o(id, m) = o™ (id,(w(id, m),w(id, m+ 1))) , Where vslowd(s o) described by (2.17).

e for the case (b):

M(id,S,D):{ﬂ(id,S,D)z(w(id,m),D): v 3 w(id,m):a} (5.37)

where P(id)cIV* describes subset of IVZ which must belong to the path
e for the case (c):

M(id,S,D)={,u(id,S,D)=(w(id,m),D): v o~ 3 w(id,m)za} (5.38)

aeNP(id)  me{l,..,.LW(u)}

where NP(id)cIVz describes subset of V2 which path 4 must omit;
e for the case (d1):

M(id, S, D) = { w(id, S, D) = (w(id, m),) w(id, m)e OW(id)} (5.39)

mef{1,...LW(u)

where OW(id)cIW? describes connected subset of 1V inside which the path u
must cross;
e for the case (d2):

M(id,S,D):{,u(id,S,D)=(w(id,m),D): Vo wlid,m)e OZ(id)} (5.40)

me{l,...,. LW (i)

where OZ(id)cWW# describes subset of Wz outside which the path 4 must cross;
e for the case (e):

M(id,S, D) ={,u(id, 5,D)=(w(id,m)7): Y, wlid,m)e w2} (5.41)
e for the case (f):

M(id,S,D)z{,u(id,S,D):(w(id,m),D): Y w(id,m)e wl} (5.42)

me(1,..,.LIW (1))

e for the case (g): the same like for the case (a).
It is possible to define set M(id,S,D) which is the common part of sets above

defined. For example, we may have the following requirements for the path: it
must cross from the point (square) to the selected region, it must omit selected
points, it must cross inside selected region and it must be "off-roads". This situation
may concern e.g. movement path for attacking company, which must move from
the occupied region to the region occupied by the opposite unit, inside the zone of
attack, omitting in this zone, for example, recognized minefields. Definition of the

set M(id,S,D) in this situation is following (we use (5.36), (5.38), (5.39) and (5.42)):
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M(id,S,D)={u(id, S, D)= (w(id,m)1): _ ¥ wlid,m)e OW(id)A

_ (5.43)
Aa(id,m)e NP(id) nw(id, m)e W, A(S=1AD 1)}

5.3.1.3. March organization determination

March organization includes the determination of such elements as: number
of columns, order of units in march columns and number and place of stops.

Number (#) of columns results from tactical rules and depends on the tactical
level of the unit: for the battalion level #columns=1, for the brigade level
#columnse {1,2,3}; for the division level #columnse {3,4,5}. In Fig. 5.9 each brigade
has a single march column consisting of two battalions equipped with 4 companies
each one; unit 111 is the head of the 1%t brigade column (and simultaneously it is
the head of the 1st battalion column); dc - distance in battalion column between
companies, Ic - company column length; db - distance in brigade column between
battalions. Order of units in march column results from tactical rules as well
(algorithm Units_Order_In_March_Column_Determ(id’), see Table 5.3).
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Fig. 5.9. Example of march organization in three columns

Number of stops c,,(id) 1is calculated as follows (algorithm

stops (

Number_of_Stops_Determ(id’), see Table 5.3):

Ca q(ld) — max{\‘ (tD(id/ t) - ts(id/ t) - trest(id‘)) ' vuvg(id) B Lputh(id)‘,()} (544)
’ Vg (i60) (£ (i) + As)
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where: t,(id,t) - demanded ending time of the march for the id unit, t,(id,t) -
starting time of the march for the id unit (as in (5.31)), t,(id,t)>t,(id,t) =0, t ,(id) -
duration time of the rest for the id unit, v,,,(id) - average march velocity for the id
id) -
duration time of the stop for the id unit, As- time interval between stops. In
(id)=24h, v, (id)e [30+40] km/h,

unit, L, (id)~- length of the path determined for the id unit (in km), ¢, (

practice, values of parameters are as follows: ¢

to,(id)=1h, Ase[3,4] h.

rest avg

Place of stops are fixed after path determination and algorithm
Place_Of_Stops_Determ(id’) (see Table 5.3) takes into account ¢, (id) and the FCam

function (see Table 2.1) to find optimal positions of stops.

5.3.1.4. Detailed march schedule determination

Detailed movement schedule for id” unit is defined as follows (procedure
Detailed_Schedule_Determ(id') in Table 5.3):

H(id',t,)=(S,D, u(id', S, D), T(id", S, D)) (5.45)
where: tp - starting moment of the schedule realization; T(id',S,D) - vector of
moments of achieving nodes on the path, T(id',S,D):<t(id',m)>mzm,

t(id',m)- moment of achieving the m-th node on the path,

S L(w(id', j),w(id', j+1

t(id',m)=t0+z (ZU(I ]) Zl')(l ]+ ))
= o(id', j)
and L(w(id’j),w(id’,j+1)) describes the geometric distance between the j-th and the
(j+1)-st nodes on the path, LIW(u(id',S, D) - number of nodes on the path for id” unit.

(5.46)

After determining MDS(id") each unit id” is subordinate to battalion id, the order is
sent by automata to each of the id” units. The idea of determining the march route
for unit id is presented in Fig. 5.10. In this figure we have three checkpoints: P1=PS,
P> and P3=PD (the path for all units must follow these points). P; is the starting
point of the march (in this point the head of the march column consisting of three
units is formed), Ps is the end point of the march (at this point the march column is
resolved), P is the intermediate point of the march. The path between P1 and Ps is
common for all units, however each unit has its own path from subarea of S to P1
and from P3 to subarea of D.

In general, the automata uses two types of categories of criteria for
synchronous movement scheduling of the K object (unit) columns defined in
chapter 4.2.1.1: (4.14) and (4.15). Taking into account that unit id is equivalent to
the k-th column we can write the following equivalence between notations being
used in chapters 4.2-4.3 and this chapter:
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o o =0kr), i'(k)=w(k,r), d,

7 (k)i

o = L(wk,r),wk,r+1)), r,(k)=in, (id).

One of the formulations of the optimization problem for movement
synchronization scheduling of K objects used in the automata is presented in
chapter 4.3.1 and methods for solving it in chapter 4.3.2. Theses methods are
implemented in the automata with a common name March_Schedule_Determ(id')

(see Table 5.3). One of the methods being used inside the previous one is
Paths_Determ(id").

== paih farabaitalion
v w= path forBldttalion
" “l = path forC haitalion
Common parl 6 paths for3halt,

unmlg_pn@n

Fig. 5.10. An example of a march route (path) for three units id’cid (filled squares) from the S source
area to the D destination area (dots represent crossroads from a digital map)

5.3.2. The Direct March Control

The direct march control process contains such phases as: command,
reporting and reaction to fault situations during march simulation (Tarapata,
2007e). Let us remember that the automata replaces the battalion commander and
manages subordinate units (company or/and platoons and equivalent).

In the movement simulation we "see" the units column on the road twofold:
(a) as occupying arcs (part of the roads) and nodes (crossroads) of the Z, network
(from equation (2.4)), (b) as a sequence of squares of the Z; network (from (2.4)) by
which the arc crosses. In case (a) we move the head and the tail of the column and
we register arcs of Z; in which the head and the tail are located with the degrees of
crossing these arcs. In case (b) we locate the head and the tail of the column on the
squares of the Z1 network and we move the "sequence" of these squares (from the
head to the tail).

Movement of the unit on the road (deployed in the column) is done by
determining the sequence of nodes (crossroads) and arcs (part of the roads) of the
Z> network and next we execute the movement from crossroad/square to
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crossroad/square (procedure Simulate_Unit_Movement(id’) in Table 5.3, see also
chapter 6.1.3).

5.3.2.1. Identifying fault situations during a march simulation and automata
reactions

The automata for marching on the battalion level reacts to fault situations
during the march simulation presented below (procedure
React_To_Fault _Situations(id’), see Table 5.3):

1. Current velocity of a subordinate unit differs from the scheduled velocity;
Reaction: (a) If a unit is the head of the column and it does not move at

planned velocity then increase the velocity (in case of delay) or decrease it (in case
of acceleration); (b) If a unit is not the head of the column then adapt the velocity to
the velocity of the preceding unit.

2. Reaching critical fuel level in one of the subordinate units;
Reaction: Report to the automatic commander. Attempt refuelling at the next

stop or refuel as soon as possible.

3. Detection of an opponent unit;
Reaction: If the opponent forces are overwhelming (opponent combat

potential is greater than the threshold value) and distance between own and
opponent units is relatively small then the unit is stopped, it goes to defensive
position and reports to the commander. Otherwise, reports only to the
commander.

4. Detection of a minefield;

Reaction: Stop and report to the commander.

5. Loss of capability to execute march (destruction of part of the march route (e.g.
bridge, river crossing), other cause of impassability);

Reaction: (a) If the route is impassable due to destruction of a part of the
march route then attempt to find a detour. Report to commander; (b) If other cause
of impassability then take defensive position and report to the commander.

6. Contamination of part of the march route or a subordinate unit;

Reaction: Report to commander. If degree of contamination is low then run
chemical defence and continue a march, otherwise try to exit from contaminated
area.

Situations which require reporting to the superior of the battalion (procedure
Report_To_Commander(id’) in Table 5.3):

(@) achieving checkpoints, stop area or rest area;
b) slowing down velocity which causes delays;
c) encountering contamination;
) encountering a minefield;
) reaching 75% and 50% of standard fuel level;

f) capability loss of march execution (reporting the cause of capability loss);
) detection of opponent units.

Q.
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5.3.2.2. Velocity calculation

The important problem during the simulation is to set the current velocity of
the unit id because of the necessity for synchronous movement of many columns.
The procedure of the velocity setting (procedure Adapt March_Velocity(id’), see
Table 5.3) inside the n-th square consists of two cases: (a) when the unit id is not
engaged in combat in the n-th square; (b) when the unit id is engaged in combat in
the n-th square.

In case (a) the current velocity veu(id,n) of the unit id in the n-th terrain square is
calculated as follows:

Veur(id,n)=min{ v (id, 1), Vaec(id,n)} (5.47)
where: v™™ (id,n)- maximal velocity of the unit id in the n-th square taking into

account topographical conditions, 0™ (id,n) is equivalent to o™ (id,(n,n)) from

(217), viec(id,n) - velocity resulting from the commander decision and equals
v(id')j) in (5.46), id'=id, j=n.

If the unit id is the head of column and it does not move with planned
velocity vae(id,n) then the velocity is increased (in case of delay) or decreased (in
case of acceleration). If the unit id is not the head of the column then the velocity of
the unit id is adapted to the velocity of the preceding unit. This movement method
is known as follow-the-leader (e.g. in Fig. 5.9 the leader of the 1%t brigade is unit
111).

In case (b) the current velocity v (id,n) of the unit id in the n-th square is calculated
as follows:

v, (id,n) = min{ f (o*"(id 1), U, U,, dist), v,,(id, 1)} (5.48)

where: (0000 - function describing the velocity in the square dependent on

vslowd(id, | 1), potentials of the unit id of side A (Ua) and B (Up) which are fighting and
distance (dist) between fighting sides.

5.3.2.3. Fuel consumption calculation

Fuel consumption FC(id,veh,u) (procedure Fuel Consumption_Determ(id’) in
Table 5.3) on the u part of the path for the type of vehicle veh belonging to the id
unit is calculated as follows:

- NFC(veh) N

FC(id, veh, u)=FLen(u)- FCC(u,veh) (id,veh) (5.49)

where: FLen(u) describes the length of the u part of a path (see Table 2.2),
FCC(u,veh) - fuel consumption coefficient for the u part of the path and for the
vehicle type veh, NFC(veh) - normative average fuel consumption for the veh type
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of vehicle (per 100km), N(id,veh) - number of vehicles of veh type in the id unit.
Fuel consumption coefficient FCC is calculated as follows:

FCC (u,veh)=(1.0+ MTC (veh))-(1.0+UC (u)) (5.50)

where MTC(veh) describes the mechanical-tactical coefficient and UC(u) -

utilization coefficient, vehe K_Veh resulting from logistic calculations (see details in
(Tarapata, 2007e)).

5.3.3. Automata Implementation

The automata is implemented in ADA language and it represents a part of an
automatic commander on the battalion level (Najgebauer et al., 2007b; Tarapata,
2007e). They realize their own tasks and pass on tasks to subordinate units.
Simulation objects and their methods are managed by a dedicated simulation
kernel (extension of ADA language). Object methods are divided into two sets:
(1) non-simulation methods - designed in order to set and get values of attributes,
specific calculations and database operations; (2) simulation methods - prepared
for synchronous ('wait-for" methods) and asynchronous ("tell' methods) data
sending. The simulation kernel is an object package based upon a permanent
process (low level ADA language task). The simulation event is stored in one of the
data structures: linked list (O(n) complexity) or effective BST tree (loga(n)
complexity). Events are sorted in chronological order resulting from timestamps
(Pierzchata, 2005). In Fig.5.11 and Fig. 5.12 general diagrams of the simulation
kernel and other important associated objects are shown.
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Fig. 5.11. Class diagrams of simulation kernel package (Najgebauer et al., 2005)
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Fig. 5.12. Diagram of classes associated with the simulation kernel package (Najgebauer et al., 2005)

Procedures implemented and used for decision planning and direct march

control processes are presented in Table 5.3.

Some simulation methods for movement of individual and group objects as
well as the method of cooperative movement simulation are presented in chapter

5.4. Moreover, a case study is presented in chapter 6.1.

Table 5.3. Procedures implemented and used for decision planning and direct march control
processes in the march automata

Procedures implemented and used for each

Procedures implemented and

unit id’€id for the decision planning process used for each unit id’eid for the direct

march control process

Units_Order_In_March_Column_Determ(id’)
Column_Length_Determ(id’)
Number_of_Stops_Determ(id’)
Place_Of _Stops_Determ(id’)
Ending_Point_PD_Determ(id’)
March_Schedule_Determ(id’)
Paths_Determ(id’)
Path_ S_To_PS_Determ(id’)
Common_Path_PS_To_PD(id’)
Path_ PD_To_D_Determ(id’)
Detailed_Schedule_Determ(id’)

March_Simulation(id’)
Simulate_Unit_Movement(id’)
React_To_Fault_Situations(id’)

Fuel Consumption_Determ(id’)

Adapt_March_Velocity(id’)
Report_To_Commander(id’)
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5.4. Methods for Movement Simulation of Individual and Group Objects

5.4.1. Method for Movement Simulation of Individual Objects

Presented here are examples of movement simulation of military objects,
which are carried out in the environment of a simulation object-oriented language
MODSIM II (Modsim, 1995). Therefore, we consequently use the notation of this
language. Each of the military objects may be considered as a separate MODSIM
object:

° VehicleObj = OBJECT

nr : INTEGER; (* object number *)

nr _nad : INTEGER; (* number of superior unit ¥*)

v_max : INETEGR; (* maximal speed *)

rodz : BOOLEAN; (* object type: TRUE - centipeded,

FALSE - wvehicular)
other fields (see attributes vector of the military unit in

(Tarapata, 2000b; 2000d))
ASK METHOD SetFields(IN nr, nr_nad, v_max: INTEGER;...);
ASK METHOD ObjInit();
END OBJECT;
o Wsp = RECORD
X, v, z : REAL;
END RECORD;
o NodeObj=0BJECT (ImageObj, QueueObj)
Translation : PointType;
Nr : INTEGER;
other methods defining a node
END OBJECT;
° LinkObj=0OBRJECT (ImageObj) ;
Source, Destination : NodeObj;
other fields and methods defining the network
link (arc)

END OBJECT;
° NetworkObj = OBJECT
NrOfNodes : INTEGER; (* number of nodes *)
ASK METHOD GiveLink (IN nodel, node2 : NodeObj): LinkObij;
ASK METHOD GiveNode (IN nr : INTEGER) : NodeObj;

other methods defining the network

END OBJECT;

. DynVehicleObj = OBJECT (VehicleOb3j, DynImageObj)
Course, Speed : REAL; (* inherited from MovingObj *)
MovingTo : BOOLEAN; (* inherited from MovingObj *)
RotationSpeed : REAL; (* inherited from RotatingObj*)
RotatingTo : BOOLEAN; (* inherited from RotatingObj*)
ScaleSpeed : REAL; (* inherited from ScalingObj *)
ScalingTo : BOOLEAN; (* inherited from ScalingObj *)
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Motion : BOOLEAN; (* inherited from DynamicObj*)
Translation : PointType; (* inherited from GraphicVObj*)
other fields inherited from superior objects
Path : ARRAY INTEGER OF INTEGER; (* the field added by
this object *)
CurrNode : NodeObj;

ASK METHOD SetCourse(IN course : REAL); (*inherited
from MovingObj*)
ASK METHOD SetSpeed(IN speed : REAL);
TELL METHOD MoveTo (IN XDest, YDest : REAL);
TELL METHOD FollowPath(IN path : PoinArrayType);
ASK METHOD SetRotationSpeed(IN rotSpeed : REAL);
(*inherited from
RotatingObj*)
TELL METHOD RotateTo(IN theta : REAL);
ASK METHOD SetScaleSpeed(IN scaleSpeed : REAL);
(*inher. from ScalingObij*)
TELL METHOD ScaleTo(In xScale, yScale : REAL);
ASK METHOD StartMotion;
(*inher. from DynamicObij*)
ASK METHOD StopMotion;
ASK METHOD DynamicUpdate (IN currTime, elapsedTime : REAL);
ASK METHOD SetCurrNode (IN node : NodeObj);
(* methods added by this object¥)
ASK METHOD SetPath(IN path : ARRAY INTEGER OF INTEGER);
ASK METHOD FindPath(IN nr_wpocz, nr_wkon: INTEGER;
IN net : NetworkObj): ARRAY INTEGER
OF INTEGER;
TELL METHOD MoveVehicle(IN NodeS, NodeD : NodeObj);

other methods inherited from superior obijects
ASK METHOD ObjInit();

END OBJECT;

The VehicleObj object contains attributes of the military object, as
information indispensable considering terrain traffic possibility by this object, etc.

The Wsp record contains information about coordinates. NodeObj and
LinkObj objects contain definitions of the network node and arc, respectively.
NetworkObj object defines the network containing, among other things,
information about network nodes (coordinates and the size of the node) and links.

The DynVehicleObj object describes a military object containing,
additionally, the possibility of moving and imaging, and inheriting both from
VehicleObj and DynImageOb3.

The DynImageObj object (Modsim, 1995; Simgraphics, 1995) is the standard
object of the SIMGRAPHICS II and describes the dynamic graphical object:
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DynImageObj=0OBJECT (ImageObj, MovingObj, RotatingObj, ScalingObj) ;
. fields and methods (see (Simgraphics, 1995, pp. 192-194))
END OBJECT;

This object may be drawn, moved, scaled and rotated with respect to
simulation time. In this connection the DynVehicleObj object has the same
properties because it inherited from the DynImageOb3j.

The most important properties of the DynVehicleObj object are presented
below:

e inherited from MovingOb3j:
FIELDS:

* Course - actual course (direction) of the object in radians in the world
coordinate system;
* Speed - object speed in the world coordinate units per time unit;
* MovingTo - TRUE if object is actually moving;

METHODS:
* ASK METHOD SetCourse(...) - setsthe direction in which the object
travels;
* ASK METHOD SetSpeed(...) - sets the speed of the object;
* TELL METHOD MoveTo (...) - moves the object to a specified point.
The method stops when the object arrives at its destination.
* TELL METHOD FollowPath(...) - moves the object along a path
defined by an array of points. This method stops when the object
arrives at the last point of the array. To stop it from continuing we
should use Interrupt.

o inherited from RotatingOb3j:
FIELDS:

* RotationSpeed - actual speed of rotation in radians per seconds;
* RotatingTo - TRUE if the object is actually rotating;

METHODS:
* ASK METHOD SetRotationSpeed(...) - sets the speed of the
rotation in radians per second. Negative values cause clockwise
rotation;
* TELL METHOD RotateTo(...) - rotates the object by angle in

radians. Does not stop the execution of the program, but is carried out
synchronically with other simulation methods;

o inherited from ScalingObj :
FIELDS:

* ScaleSpeed - actual speed of object scaling;

* ScalingTo - TRUE if object actually scaling;
METHODS:
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* ASK METHOD SetScaleSpeed(...) - sets the amount that is added to
an object scaling factor every unit of time. For example, with the scale of

1.0, the object becomes twice as big after 1 unit of time, 3 times as big

after 2 unit of time, etc.;

* TELL METHOD ScaleTo(...) - synchronic scaling of the object to the

point defined as the method parameter with speed ScaleSpeed;

inherited from DynamicObj (which was inherited from MovingObj,

RotatingOb3j, ScalingObj):
FIELDS:

* Mot ion - TRUE if object is currently moving;
METHODS:

*ASK METHOD StartMotion- starts an object movement. After the

method is invoked the DynamicUpdate method (described below)

which is called automatically from the runtime library;

* ASK METHOD StopMotion- stops an object from moving.

DynamicUpdate method no longer is invoked from the runtime library;

* ASK METHOD DynamicUpdate (IN currTime, elapsedTime : REAL)

- called periodically by the timing routine to update animation.

Animation (moving) of the DynImageObj object type can be done in two

the destination point.

The fields and methods added by DynVehicleObj are the following:
FIELDS:

* CurrNode ;

* path;
METHODS:

* ASK METHOD SetCurrNode(...);

* ASK METHOD FindPath(...);

* TELL METHOD MoveVehicle(...).

ways. The first way is to set the object fields Course and Speed and invoke the
StartMotion method of this object. It causes the object movement with fixed
attributes. The second way is to use TELL or WAIT FOR instructions for the TELL
method (e.g. MoveTo, ScaleTo, RotateTo), which causes time elapsing and
synchronous invoking TELL methods, which are stopped after reaching

The CurrNode field contains information about the network node lastly

belonging to the path for the current object.

achieved by the object. The Path field contains an array of node numbers

SetCurrNode (...) method is invoked when the object achieves the next

node on its path.
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FindPath (...) method sets the path for an object. The result is an array of
node numbers belonging to the path from the starting node to the ending node for
the current object.

TELL method MoveVehicle (IN NodeS, NodeD : NodeOb7j) causes
synchronous movement of the object from NodeS to NodebD. This is the most
important method from the point of view of movement simulation. Possible code
of it is presented in Example 5.1.

Example 5.1
TELL METHOD MoveVehicle (IN NodeS, NodeD : NodeObj);
VAR
link : LinkObij;
NetWindow : NetworkObij;
i : INTEGER;
xd, xs,yd,ys : REAL;
exit : BOOLEAN;

BEGIN
1 ASK SELF TO DisplayAt (ASK NodeS Translation.x,
ASK NodeS Translation.y);

2 WHILE (i < > HIGH (Path)+1l) AND (NOT exit)

3 INC (1) ;

4 IF 1 < HIGH (Path)

5 link := ASK NetWindow TO GiveLink (

ASK NetWindow TO GiveNode (ASK SELF Path[il]),
ASK NetWindow TO GiveNode (ASK SELF Path[i+1]1));

6 IF link <> NILOBJ
{ object moving }
7 NodeD := ASK link Destination;
8 NodeS := ASK link Source;
9 xs:=ASK NodeS Translation.x;
10 ys:=ASK NodeS Translation.y;
11 xd:=ASK NodeD Translation.Xx;
12 yd:=ASK NodeD Translation.y;
13 ASK SELF TO SetRotationSpeed(RotationSpeed);
14 WAIT FOR SELF TO RotateTo (ATANZ2 (ys-yd, xs-xd) +pi);
15 ON INTERRUPT
16 IF SELF<>NILOBJ
17 DISPOSE (SELF) ;
18 END IF;
19 exit :=TRUE;
20 END WAIT;
21 ASK SELF TO SetSpeed (Speed);
22 WAIT FOR SELF TO MoveTo (xd, yd);
23 ON INTERRUPT

24 IF SELF<>NILOBJ
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25 DISPOSE (SELF) ;
26 END IF;

27 exit :=TRUE;

28 END WAIT;

29 END IF;

30 END IF;

31 END WHILE;
END METHOD;

In line 14 the rotation with a fixed angle is done. In line 21 the object speed on
the arc from NodesS to NodeD is set. This speed may be known by solving the
problem described in chapter 5.3.2.2. Invoking of the method to start
a synchronous object movement to the specified point (node) is presented in line
22. Independently of this, objects may be moved by means of the StartMotion
method (see description earlier presented).

The full invoking of an object movement may resemble that in Example 5.2.

Example 5.2
VAR
vehicle : DynVehicleObij;
NetWindow : NetworkObij;
path : ARRAY INTEGER OF INTEGER;
BEGIN

NEW (vehicle);

path:=ASK vehicle TO

FindPath (NrOfStartingNode, NrOfEndingNode, NetWindow) ;
ASK vehicle TO SetPath (path);
nodeS:= ASK NetWindow TO GiveNode (NrOfStartingNode) ;
nodeD:= ASK NetWindow TO GiveNode (NrOfEndingNode) ;
TELL vehicle TO MoveVehicle (nodeS, nodeD);
StartSimulation () ;

StopSimulation();
END METHOD;
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5.4.2. Method for Movement Simulation of Group Objects

A method of movement simulation for grouped objects is strictly related to
the movement of individual objects. An example of a grouped object is a column
(convoy) of individual objects. In this case, movement of these objects may
resemble that in Example 5.3.

Example 5.3
VAR
VehicleColumn : ARRAY INTEGER, INTEGER OF VehicleObj;
ColumnsNumbers,
HowManyInColumn : INTEGER;
delayTime : REAL;
BEGIN

NEW (VehicleColumn, 1..ColumnsNumbers, 1..HowManyInColumn) ;
FOR i:=1 TO ColumnsNumbers
FOR j:=1 TO HowManyInColumn
NEW (VehicleColumn (i, j]);
path:=ASK vehicle TO FindPath (NrOfStartingNode+i,
NrOfEndingNode+]j, NetWindow) ;
ASK VehicleColumn[i, j] TO SetPath (path);
nodeS:=ASK NetWindow TO GiveNode (NrOfStartingNode+i) ;
nodeD:= ASK NetWindow TO GiveNode (NrOfEndingNode+tj) ;
TELL VehicleColumn([i, j] TO MoveVehicle (nodeS, nodeD)
IN delayTime;
END FOR;
END FOR;
StartSimulation () ;

StopSimulation();
END METHOD;

Using the instruction "TELL VehicleColumn([i, j] TO
MoveVehicle (nodeS,nodeD) IN delayTime" causes that particular object of
the column to follow the previous object (that is second behind the first, third
behind the second, etc.) with a delay equal to delayTime. The value of this delay
may be changed and then we can use the StartMotion() and DynamicUpdate()
methods to dynamically change the path for each object.
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5.4.3. Method for Cooperating Objects Movement Simulation and
Management

To plan and control K units movement during simulation described in
chapters 5.3.1 and 5.3.2 the Movement Synchronization Manager (MSM) has been
proposed (Tarapata, 2007e; 2010b) and its idea is presented in Fig. 5.13.
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Fig. 5.13. The idea of the Movement Synchronization Manager

The first step (before simulation) is to run the Movement Planning Manager
(MPM) which plans the movement of K objects by solving the optimization
problem defined in chapter 5.3.1 (depending on user preferences). The MSM is
started when the unit movement simulation starts. It keeps information about
group (arrangement) pattern (GP) of K monitored units, type of distance measure
(TDM) between the current group and group pattern, and acceptable value of distance
(AVD). When the simulation starts the MSM is informed about each change of
location of the monitored units and then the procedure From-Pattern Distance
Calculator is executed. This procedure calculates the distance from GP taking into
account the defined distance measure TDM, AVD and current locations of K units
being monitored. Next, the procedure Movement Plan Modification Decision-Maker is
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executed. If a calculated "distance" is greater than the acceptable value of the AVD
"distance" and communication between the commanding unit and monitored units
exists (we simulate a commander, which sees or knows about departures from the
plan and decides to synchronize movement of units subordinate to him using the
communication network) then the Movement Planning Manager (MPM) starts to
search for a new schedule for the K units.

Note that the group pattern units (GP) have been defined twofold: (1) using
the geographical (terrain) distance; (2) using time. The definition of the time group
pattern is presented in chapter 4.2.1.2 as the MSST problem (more precisely: as
instances of the 7 (k) time). The definition of the terrain distance group pattern is

presented in chapter 4.2.1.3 as the MSSD problem.

5.5. Summary

The models and methods described in the chapter are used in a real
simulation support system for military operational training (Antkiewicz et al.,
2011b; Najgebauer et al., 2007b) and/or can be used in Computer Generated Forces
systems. The presented methods and their implementations are very promising in
context of Computer Assisted Exercises management and effectiveness. By using, for
example, a decision automata at the battalion level, we can save a lot of time and
decrease the number of training participants, so even very complex exercises can
be organized and carried out by analyzing and go through different scenarios of
military conflicts.

There are some conclusions related to the presented decision automata. The
presented multicriteria weighted graph similarity problem (MWWGSP) combines
well-known structural and rarely considered non-structural (quantitative)
similarity between graphs as models of some objects. The approach to structural
similarity between graph vertices adopted from (Blondel et al., 2004) can be
improved (Melnik et al., 2002; Senellart & Blondel, 2003) because of the definition
of the similarity matrix (5.15) is still not totally satisfactory (e.g. it is not always
diagonally dominant for self-similarity). Different types of similarities should be
compared with graph vertices similarity. Moreover, different types of methods for
solving multicriteria problems (Eschenauer et al., 1990) should be checked for
solving MIWGSP. Let us note that we can easily adopt centrality measures from
social networks to use them or their combinations instead s;; in (5.17) (Bartosiak et
al., 2011).

One of the aspects of automatization of the decision processes - movement
planning, synchronization and simulation is essential not only in CGF systems.
Simulation systems for military trainings should have modules for management
(planning, synchronization) multi-objects movement. The quality of this
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management has an effect on accuracy, effectiveness and other characteristics of
simulated battlefield systems. In general, modelling, optimization and simulation
of multi-convoy redeployment (for simultaneous movement of many columns) are
very complicated processes. Complexity of these processes depends on the
following conditions: number of convoys (the greater the number of convoys the
more complicated the scheduling of redeployment is); number of objects in each
convoy (the longer the convoy the more complicated the scheduling of
redeployment is); Have convoys been redeployed simultaneously? Can convoys be
destroyed during redeployment? Can the terrain-based network be destroyed
during redeployment? Have convoys been redeployed through disjoint routes?
Have convoys achieved selected positions (nodes) at a fixed time? Do convoys
have to start at the same time? Have convoys determined any action strips for
moving? Can convoys be joined and separated during redeployment? Do convoys
have to cross through fixed nodes?, etc. Some of these aspects are considered in
chapter 53.1 and in the papers: (Beautement et al., 2006; Benton et al., 1995;
Cassandras et al., 1995; Gelenbe et al., 2004; Karr et al., 1995; Kreitzberg et al., 1990;
Lee & Fishwick, 1995; Lee, 1996; Logan & Sloman, 1997; Logan, 1997; Longtin &
Megherbi, 1995, Mohn, 1994; Pai & Reissell, 1994; Sahin et al, 2008;
Schrijver & Seymour, 1992; Sun et al., 2008; Rajput & Karr, 1994; Tarapata, 1998;
1999b; 2000f; 2001; 2003a; 2004a; 2005a; 2005b; 2007¢; 2010b; 2011b; Tuft et al., 2006;
Wang, 2006; Wellman et al., 1995; Zafar et al., 2006).

A very important problem, which deals with automatization of decision
processes, is the calibration of simulation models of complex processes
(Antkiewicz et al., 2006; Dockery & Woodcock, 1993; Hofmann, 2005). It enables the
tuning of these models. This process has an influence on one of the most important
features of simulation models as is adequacy.

Some additional applications of presented methods are described in
chapter 6.
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In this chapter some applications in real systems of presented models and
algorithms are described. In chapter 6.1 an application and specialization of
movement planning and simulation models and algorithms in real simulation
systems Zlocien and MSCombat are presented. Chapter 6.2 contains a description of
knowledge-based pattern recognition tools to support mission planning and
simulation as an example of tools, which use models and algorithms presented in
chapter 5.2. In chapter 6.3 we described applications in security and crisis
management systems.

6.1. Movement Planning and Simulation in the Zlocien and MSCombat
Systems

6.1.1. Simulation Based Operational Training Support System (SBOTSS)
Zlocien and MSCombat: a Short Overview

The stochastic simulator being considered is the Simulation Based Operational
Training Support System (SBOTSS) - Zlocien (Antkiewicz et al., 2008e; 2009b; 2010f;
Najgebauer et al., 2004a; 2007b; 2008b; Zlocien, 2002) which has been built at the
Cybernetics Faculty of the Military University of Technology in Warsaw (Poland)
and the author of this work is a member of the team, which has built the system.

Table 6.1. Description of the Simulation Based Operational Training Support System (SBOTSS) - Zlocien

Feature Description
Domain Land operations, corps-division-brigade levels. Supported by detailed
logistics and integrated intelligence operations, air support, EW.
Span ADRG digitized maps and VPF terrain data permit the model to be used

worldwide. The Terrain Rectangle Model (TRM) and Road_and_Railway
Net Model (R&RNM) can be used to build terrain files to support the
Zlocien model.

Environment | Rectangle-based terrain aggregates regional terrain and environmental
characteristics:  traffic-ability,  elevation, = vegetation,  chemical
contamination, and weather - granularity is 200mx200m. Railways and
roads are mapped via the independent Road_and_Railway Net Model,
which is complementary to the Terrain Rectangle Model. Specific terrain
or engineering objects are modelled separately and can be located on the
maps transformed by terrain models - TRM and R&ERNM.

Software Combat simulator, After Action Review (AAR) procedures, Calibrator,
Set of DBs (operational, terrain, scenario), Scenario Editor, Portal SBOTSS
Zlocien, Reporter AAR, Visualization Server, ADatP3 Editor.
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The SBOTSS Zlocien has been put into practice at the War Games and Simulation
Centre of the National Defence University in Warsaw. This system has been used
during Computer Assisted Exercises (CAXes). The Zlocien is an integrated,
interactive, multi-sided land, analysis and training support model (with logistics,
engineering, electronic warfare and intelligence functions), which realizes
stochastic ground-combat attrition. The system is a federation, High Level
Architecture (HLA) compliant (Kuhl et al., 1999), cooperating with C3 systems
(Command, Control and Communication, C3) and heterogeneous platform (Sun
Solaris, Windows NT). The detail description of the Zlocien system is presented in
Table 6.1. The TRM is equivalent to the Z; network from (2.2) and the R&RNM - to
the Z> network from (2.4).

The Modelling and Simulation of Combat (MSCombat) system has been also built
at the Cybernetics Faculty of the Military University of Technology in Warsaw. The
basic features of the environment are as follows (Najgebauer et al., 1999b): the
conflict scenario preparing, mission formulating for two sides, support of decision
making process on the division level, simulation of decision making in the lower
level, simulation of combat actions (combat units manoeuvre battle simulation),
communication simulation, realization of external tasks in the interactive mode,
commander interference with game during the simulation process, evaluation of
decisions made as a result of data collected which are connected with two fighting
sides moves and effects of these moves. The MSCombat is realized on the basis of
MODSIM III and SIMOBJECT language. The hardware platform is heterogeneous,
so simulation can be executed on PC Pentium and Risc platforms. The RTI API
enables a co-operation of these platforms. The co-operation RTI API specification
environment with MODSIM is possible thanks to special HLA /MODSIM interface.
The General Algebraic Modelling System (GAMS) supplies methods of optimisation
problems solving and is called from the simulation environment.

6.1.2. Models and Algorithms for Movement Planning

Algorithms of movement planning in the Zlocien system allow us to
determine movement plans defined in chapter 5.3.1.2. The algorithms take into
account three types of criteria defined there: time (1), distance (l2) and degree of
camouflage (I3) (or decamouflage). We can find single-criterion paths or
multicriteria (2- or 3-criteria) paths taking into account the metacriterion function
approach described in chapter 3.3.4.3 with the arc metafunction (3.49).

To find paths for units, modified shortest path algorithms (SPA) such as
Dijkstra’s, A*, geometric SPA are used in SBOTSS Zlocien (Tarapata, 2004a; 2011b):
* (A) Dijkstra's for finding shortest paths using binary heaps (with complexity

O(m logz n), where m - number of graph edges (arcs), n - number of graph
nodes); we can also use faster implementations of the Dijkstra's algorithm, e.g.
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using 4-ary heaps (with complexity O(m logs n), see Fig. 6.1), which is very
effective for the special structure of the graph (if the graph is r-regular’ then
r-ary heap is very effective to represent priority queue in the Dijkstra's or A*
algorithm (Cherkassky et al., 1996; Tarjan, 1983));
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Fig. 6.1. Computational complexity of A* (A*) and the Dijkstra's algorithms implemented with
heaps: binary (h2), 4-ary (h4), Fibonacci's (hF), binomial (hb) and red-black tree (trb) for the real

part of terrains used in the Zlocien system with four neighbours for each square

(B) A* for finding the shortest paths using heuristics (Hart et al., 1968); in
the case of grid graphs this algorithm converges faster (in the average case)
than the Dijkstra’s algorithm. In the A* algorithm the criterion for choosing
node x’ for the next iteration is based on the function:

g(x")+h(x")=min{g(x)+h(x): x is not a checked node}
while, in the Dijkstra’s algorithm:
¢(x")=min{g(x): x is not a checked node}

where: g(x) - length of the shortest path from source node s to node x;
h(x) - estimation of the length of the shortest path from node x to target node
t. It is proved (Hart et al., 1968) that, if the value of the heuristic h(x) is no
greater than the real length of the shortest path from node x to target node t,
then A* gives the optimal solution (for h(x)=0 we have the Dijkstra’s
algorithm);

! Graph G is r-regular if each of its nodes is adjacent to r nodes.
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e (C) for determining the shortest geometric paths (Mitchell, 1999). In the Zlocien
system this algorithm supplements two of the above presented algorithms (we
obtain the Hybrid Shortest Path (HSP) algorithm) and it is used in the case when
the size of the network S7 is large (the default is 10 000 nodes, but it is
a parameter set in the so-called calibrator of the simulation system (Antkiewicz
et al., 2006)).

The idea of the hybrid (HSP) algorithm is described in Fig. 6.2. First we run
HSP (C) to determine squares belonging to the segment linking the source square
with the target square and next the condition whether all of these squares are
passable is checked (starting from the source square). If all of the squares
belonging to this segment are passable then the path has been determined.
Otherwise, the hybrid algorithm runs one of the algorithms (A) or (B) which start
from the last passable square on the segment (or from the one square before the
last passable, or from the two squares before the last passable, etc.) and determine
the shortest path to the target square. If a path exists then it is joined to the part of
the path determined using the HSP algorithm (C), otherwise we use (A) or (B)
algorithms from the source to the target.

Fig. 6.2. The idea of the hybrid algorithm (HSP) for the shortest paths in the Zlocien system

Modifications of mentioned algorithms deal with the following details:

e paths determining in different configurations: from point (region) to point
(region), visiting selected points (regions), omitting selected points (regions,
obstacles), inside or outside selected region, off-roads only, on-roads only,
combined on- and off-roads and others to find different types of movement
plans defined in chapter 5.3.1.2;
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Table 6.2. The headings of the procedures for finding paths in the networks Z; (left hand side) and

if we do not set region inside where we want to find the path then the
algorithm itself iteratively determines the rectangular region which is based on
the line linking source and target points (nodes) of movement, in order to

minimize computational time;

if we want to find the on-road path only, and there are no nodes of the road
network (Z2) inside the intermediate squares, then the algorithm may
optionally find crossroads (nodes of the road network) that are nearest to
squares inside which the path must cross.

In Table 6.2 the headings of the procedures for finding paths in networks Z;
and 57 in the Zlocien system are presented.

57 (right hand side)

Procedures for finding paths in Z1 network

Procedures for finding paths in S network

procedure Determine_Path_On_Squares
(in Unit_Id,
in Inside_Region,
in Region_To_Avoid,
in Region_From,
in Region_To,
in Criterion,
in Whether_Avoid_Occupied,
out Path);

procedure Determine_Path_On_Roads
(in Unit_Id,
in Inside_Region,
in Region_To_Avoid,
in Across_Region,
in Criterion,
in Whether_Search_For_Route_Nodes,
out Path);

In the MSCombat system the first implementation of the SGDP algorithm from

chapter 3.4.3.1 for finding K>1 disjoint paths has been tested.

6.1.3. Models and Algorithms for Movement Simulation

Z,. However, in each of these models we "see" the units during movement in

Movement simulation of the units is realized in both terrain models Z; and

different ways. We accept the following assumptions and definitions:

1. Small square and big square: small square is the square of the Z; network; big
square is an aggregated set of small squares (e.g. for the unit at company level
the big square is the square with 4x4 small squares);

2. Possible deployment of the units:

on the road twofold:

Z1 network through which the arc crosses. In this case we use functions
and FW,0nW,: W, - WV,

FW,0nW, : W, — 2"
Table 2.2;

e inside a small square (e.g. reconnaissance patrol on a single vehicle);

* inside a big square (unit at company level may occupy 4x4 small squares);
e on the road in a column (based on arcs of Z). In this case we "see" the unit
(1) as occupying arcs (part of the roads)
and nodes (crossroads) of the Z> network, (2) as a sequence of squares of the

from Table2.1 and
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3. Inside the big square the unit is evenly deployed taking into account passable
small squares only (in special cases we omit this assumption).

Movement of the unit, which is deployed in the big square is being done by

determining the sequence of small squares, which create the path for a selected
(e.g. lower left) small square of the big square (using the algorithm presented in the
previous section) and next we realize the movement from square to square. In such
a case we move the big square with the small square granulation (see Fig. 6.3).
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Fig. 6.3. The idea of unit movement on the squares of network Z;

In Fig. 6.3 the big square in which the unit is deployed has 4x4 small squares.
The continuous line describes current deployment of the unit, the dashed line - the
new location (after movement with the small square in the south-west direction).
Dots inside the squares describes that there is some part of the unit. The arrow
from the left side of the big square describes the direction of movement. After the
movement the unit has been cumulated inside the 13 small squares because 3
lower left squares are not passable (because of the lake). Movement across the
"bottleneck" of the terrain (e.g. minefields crossing, bridge crossing) are realized
similarly (using the accumulation of the unit inside small squares).

Movement of the unit on the road (deployed in the column) is done by

determining the sequence of nodes (crossroads) and arcs (part of the roads) of the
Z; network using the algorithm presented in the previous section and next we
realize the movement from crossroad to crossroad. As it has been written, we "see"
the unit on the road twofold: (1) as occupying arcs (part of the roads) and nodes
(crossroads) of the Z; network, (2) as sequence of squares of the Z; network by
which the arc crosses. In the case of (1) we move the head and the tail of the
column and we register arcs of the Z; on which the head and the tail are located
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with degrees of crossing these arcs. In the case of (2) we locate the head and the tail

of the column on small squares and we move the sequence of small squares (from

the head to the tail), like in Fig. 6.2.

In both models of movement the unit can move to the next square of its path
if the following criterions are satisfied:

e square is topographically passable;

e square is tactically passable (lack of minefields, lack of an enemy unit (unit can
occupy a square of the enemy unit, if and only, if the enemy unit is destroyed),
number of own units in the square are no greater than a critical value
(default=5)).

The movement can be also interrupted, because of: the lack of fuel, destroying the

unit, commander decision, simulation termination, etc. (see description of fault

situations in chapter 5.3.2.1).

The very important problem of setting the current velocity of the unit id
during movement simulation is described in chapter 5.3.2.2.

For movement simulation of units we use simulation procedures similar to

these, which have been described in chapter 5.4.

6.1.4. Practical Example

In this chapter a practical example of march planning and simulation in the
Zlocien system using automata for a march (see chapter 5.3) is presented. In Fig. 6.4
an initial tactical situation is shown.

Fig. 6.4. Initial tactical situation, 4:00am: two mechanized brigades of the BLUE conflict side
(121 BZ and 123 BZ) receive an order to march
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In the example being considered, 2 mechanized brigades (121 BZ and 123 BZ: each

of the brigades consists of 4 mechanized battalions x 4 mechanized companies

each) of the BLUE side receive the order to march. In the superior order (from

(5.31)):

e destination area for 121 BZ and 123 BZ is set about 30km to the north of the
northern edge of the location area of the RED conflict side;

e distance from the source area S to the destination D is equal to about 110km;

e 5 checkpoints are set.
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Fig. 6.5. Location of the 121 BZ (a) and 123 BZ (b) on the road, 5:50am

In Fig. 6.5 the locations of 121 BZ and 123 BZ, respectively, after nearly 2
hours of marching are presented.

Initial redeployment of the BLUE side is presented in Fig. 6.6a. 121 BZ is
redeployed on the northern-east of the BLUE force redeployment area. 123 BZ is
redeployed south of 121 BZ. In Fig. 6.6b location of 121 BZ and 123 BZ at 5.50am is
shown.

In Fig. 6.7 the fuel level percentage regarding the starting level (4 825 litres) is
presented for selected unit (12111 kz (belonging to 1211 bz from 121 BZ) consisting
of 13 wheeled armoured "Rosomak" carriers) during the 110 km march, from
4:00am to 7:30am. Fuel calculation during a march simulation has been done using
formula (5.49).

In Table 6.3 the average velocities between selected march checkpoints
(descriptions of S, D, PS, PD in chapter 5.3.1.1, see also Fig. 5.10) for 121 BZ and
123 BZ are presented. Average march velocity is equal to about 30km/h. Velocity
calculation has been done using procedures described in chapter 5.3.2.2.
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Fig. 6.6. (a) Initial redeployment of the BLUE side, 4:00am and (b) the location of 121 BZ and 123 BZ,
5:50am
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Fig. 6.7. Percentage fuel level regarding the starting level (4 825 litres) for 12111 kz (consisting of 13
wheeled armoured "Rosomak" carriers) during march on the distance 110 km, from 4:00am
to 7:30am

Table 6.3. Average velocities between selected march checkpoints for 121 BZ and 123 BZ (in km/h)

Unit $=>PS | PS=>PD | PD=>D | S=>D
121 BZ 12.32 39.65 18.24 29.54
123 BZ 14.07 27.84 22.57 24.65
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6.2. Knowledge-Based Pattern Recognition Tools to Support Mission
Planning and Simulation

6.2.1. A Short Overview of CAVaRS and Guru Systems

In this section we present two tools to support mission planning and
simulation, which have been built at the Cybernetics Faculty of the Military
University of Technology in Warsaw (Poland) and the author of this work is
a member of the team which has built them: (1) the deterministic simulator called
CAVaRS (Course of Action Verification and Recommendation Simulation System)
(Antkiewicz et al., 2011a; 2011b); (2) The System of Automatic Tools for Decision
Support (SATDS) Guru (Antkiewicz et al., 2009¢; Guru, 2005).

The CAVaRS may be used as a part of a bigger system, the SATDS Guru, which
supports the Polish C4ISR systems or it may work standalone. The deterministic
and discrete time-driven simulator CAVaRS models two-face land conflict of
military units on the company/battalion level. The simulator is implemented in the
JAVA language. The model concerns a couple of processes of firing interaction and
movement executed by a single military unit. These two complementary models
use a terrain model described by a network of square areas, which aggregates
movement characteristics with 200mx200m granularity (similarly to Zlocien
system). The course of each process depends on many factors, among them: terrain
and weather conditions, conditions and parameters of weapons the units are
equipped with, the type of executed unit activities (attack, defence) and the
distance between opposite units.

Scenarios of the variants of the military scenario in the Knowledge Base Editor of
the simulator CAVaRS can be created in two ways: manually and half-automatic.
In manual mode the variant can be built using military unit templates stored in the
CAVaRS database. In half-automatic mode the military scenario can be imported
from other C3(4)ISR (e.g. C3ISR Jasmin) systems using NATO MIP-DEM
(Multilateral Interoperability Program - Data Exchange Mechanism) and NATO
MIP-JC3IEDM (Joint Consultation, Command and Control Information Exchange Data
Model) integration database schema. The Knowledge Base Editor can import and
transform data from MIP JC3IEDM standard data schema to CAVaRS data schema.
This way is faster than manual mode, because all data of military units or at least
most of them can be imported from other C3(4)ISR systems with detailed data such
as unit location, equipment, weapons, etc.

The purpose of The System of Automatic Tools for Decision Support (SATDS) -
Guru is (Antkiewicz et al., 2009¢):

e using expert methods to support decision-making by a commander of an
operational (tactical) level concerning planning military actions;
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e developing tools for operational training of commanders and field-grade
officers in planning military actions;

e provision of software tools for continuing the collection of multiple experts'
knowledge and the development of knowledge bases for developing user
applications within the scope of expert support for decision-making by
appropriate commanders.

The Guru is an IT system to support, using expert methods, decision-making
in the following Polish C2 (Command and Control) systems: for the ground forces -
Kolorado and Szafran ZT (in cooperation with the Zlocien system), for the air force -
Dunaj and Podbial, for the navy - Leba/MCCIS as well as planning joint operations
on the operational level (see also Antkiewicz et al., 2008c; 2010e).

6.2.2. Practical Example of Using CAVaRS

The example shows elements of knowledge base and the algorithm of nearest
pattern situation searching based on models defined in chapters 5.2.2 and 5.2.3.

The main element of the system is the knowledge base, which consists of
Pattern Situations (PS) (representation of the PDSS set from chapter 5.2.1). Each PS
is connected to the set of Course of Actions (CoA). The example of two PSs and their
CoAs are presented in Fig. 6.8.

-

'
I

Fig. 6.8. (a) Graphical representation of PS;
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(b)
Fig. 6.8. (b) An area of opposite forces for PS:

The first PS (PS1, see Fig. 6.8a) is connected with two CoAs (see Fig. 6.9a and
Fig. 6.9b). The second PS: is shown in Fig. 6.10. Parameters have been fixed for
each PS. Fig. 6.8b shows the analyzed area of enemy forces. Parameters of each PS
are kept in the knowledge base (see also Fig. 1.1). Table 6.4 and Table 6.5 show
values of PS parameters.

! ; . = s "' M § L .-: 4~ \as : =
@) (b)
Fig. 6.9. (a) Graphical representation of PS;, CoAs; (b) Graphical representation of PSi, CoA»

Coordinates of terrain area for PS1 (NW: north-west corner, NE: north-east
corner, SW: south-west corner, SE: south-east corner):

NW (LP)=515556N 0213922E ; NE (PP)=515740N 0213053E ;

SW (LT)=520056N 0214431E; SE (PT)=520254N 0213541E.

Potential of own forces: mechanized 444; armoured 61.2; artillery 30;
antiaircraft 0; other 0.
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Table 6.4. Detailed values of PS; parameters using notations from (5.1)

P17 s [ sp [ sp | sppt | spit | sp* | s
0 0 54% 1% 1% 0.069 0 0 0
0 1 44% 4% 1% 0.116 0 0 0
0 2 42% 15% 2% 0.186 0 17.46 94.13
0 3 45% 9% 4% 0.21 190 16.32 23.75
0 4 41% 8% 2% 0.252 80 52 0
0 5 42% 24% 1% 0.176 0 0 0
1 0 46% 23% 2% 0.12 0 0 0
1 1 54% 5% 1% 0.162 0 0 0
1 2 37% 15% 0% 0.231 0 26.98 140.8
1 3 47% 13% 0% 0.158 25 5.71 21.35
1 4 45% 10% 0% 0.177 25 1.62 0
1 5 35% 0% 34% 0.168 0 0 0
2 0 2% 0% 58% 0.096 0 0 0
2 1 7% 0% 54% 0.135 0 0 0
2 2 17% 0% 50% 0.183 0 0 0
2 3 11% 0% 38% 0.138 0 0 0
2 4 23% 0% 34% 0.162 0 0 0
2 5 51% 0% 29% 0.179 0 0 0
3 0 2% 0% 46% 0.168 0 0 0
5 5 25% 20% 0% 0.013 0 0 0

1 1 ‘ 3 ‘r =5

-

Fig. 6.10. Graphical representation of PS,

Coordinates of the terrain area for PS: (NW: north-west corner, NE:
north-east corner, SW: south-west corner, SE: south-east corner):

NW (LP)=520120N 0213451E ; NE (PP)=515943N 0214150E ;

SW (LT)=515858N 0213135E ; SE (PT)=515625N 0213736E.



Z. Tarapata — Models and Algorithms for Knowledge-Based Decision Support and Simulation... 197

Potential of own forces: mechanized 320; armoured 73.3; artillery 280;
antiaircraft 0; other 0.

Fig. 6.11. Current situation (CS)

Table 6.5. Detailed values of PS, parameters using notations from (5.1)

L SDZ?'1 SD;'2 SD;’3 SD;’4 SD;'5 SD;?’6 SD;?’7
0 0 29% 93% 0% 0.01 0 0 0
0 1 55% 48% 0% 0.06 0 0 0
0 2 91% 1% 0% 0.04 8.62 4.49 0
0 3 84% 10% 0% 0.04 5.38 2.81 0
0| 4 84% 11% 0% 0.03 0 5.85 27
0 5 76% 30% 0% 0.01 0 0.65 3
2 2 88% 0% 0% 0.03 13 1.44 0
2 3 84% 10% 0% 0.05 60 6.55 0
2 | 4 59% 44% 0% 0.07 6 0.6 0
2 5 77% 12% 0% 0.06 0 0 0
3 0 66% 33% 0% 0.09 0 0 0
3 1 83% 4% 0% 0.04 0 0 0
3 2 88% 3% 0% 0.02 6.5 0.72 0
3 3 80% 7% 0% 0.08 32.5 3.59 0
3 4 82% 1% 0% 0.1 0 0 0
3 5 81% 0% 0% 0.12 0 0 0
4 0 40% 74% 0% 0.08 66.9 7.39 0
4 1 62% 43% 0% 0.06 32.7 3.61 0
4 2 85% 1% 0% 0.05 93.6 10.4 0
4 3 70% 22% 0% 0.09 0 0 0
4 | 4 69% 9% 0% 0.15 0 0 0
4 5 87% 4% 0% 0.05 18.9 2.09 0
5 5 85% 6% 0% 0.05 85.1 9.41 0
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Values of each PS parameters of the current situation (see Fig. 6.11) have been
calculated. The algorithm for finding the most similar pattern situation compares
the current situation parameters with each PS from the knowledge base using the
method described in chapters 5.2.2 (the method from chapter 5.2.3 is still being
developed and tested). As a result, the PS1 has been fixed according to the dist
values (equations (5.7) and (5.9)) presented in Table 6.6 because:

dist,,(CS, PS,) < dist,,(CS, PS,) and dist,,(CS, PS,) <dist,,(CS, PS,),

pot

hence PS; dominates PS> from the Rp (formula (5.12)) point of view.

Table 6.6. Detailed values of dist parameters from (5.7) and (5.9)

PS dist ,(CS, PS) dist,, (CS,PS)
PS, 203.61 122
PS, 22232 147

6.3. Applications in Security and Crisis Management Systems

6.3.1. MWGSP Approach

In this chapter we will show how to use, described in chapter 5.2.3, the
MWGSP approach with the Social Network (represented by Complex Network)
analyzing and semantic-based terrorist threat indication as well as information
diffusion in networks. Applications presented here are described in detail in
(Bartosiak et al., 2011; Tarapata & Kasprzyk, 2009¢c; 2010e; Tarapata et al., 2010d).

The method presented in (Tarapata et al., 2010d) introduces an original
approach to knowledge representation as a semantic model, which is further
processed by the inference algorithms and structure graph analysis towards
a complex network (using the MWGSP model). Described models consist of
experience gathered from intelligence experts and several open Internet
knowledge systems such as the Global Terrorism Database. We have managed to
extract core information from several ontologies and fuse them into one domain
model aimed at providing the basis for indirect associations' identification method.
Until now, scientists have tried to construct theoretical models describing the
behaviour of real systems, which is the main reason of Complex Networks
applications (Antkiewicz et al., 2009a; Barabasi & Reka, 2002; Kasprzyk, 2005;
Newman, 2003; Strogatz, 2001; Watts & Strogatz, 1998). The main aim of research
in this area is to uncover the mechanisms hidden in the structure of complex
systems, which can further lead to the discovery of real networks characteristics
and their explanation. Apparently, networks derived from real data (most often
spontaneously growing) have "six degree of separation", power low degree
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distributions, hubs occurring and many other interesting features. Complex
Networks have Scale Free, Small Word and Clustering properties (Wang & Chen,
2003) that make them accurate models of networks such as social networks, in
particular, a terrorist organization with features mentioned above (Antkiewicz et
al., 2008b; Najgebauer et al., 2007a). The Scale Free and Small World networks, while
being fault tolerant, are still very prone to acts of terrorism. The Scale Free feature
distinguish immunity against random attacks (it is hard to hit a hub). The Small
World feature can dramatically affect communication among network nodes.

For the purpose of this application we have developed a transformation from
a created semantic network into a set of Complex Networks. First we have to choose
the ontology, which is the most significant from the analysis point of view. It leads
to leave only a subset of nodes and edges connecting them. At this moment we
have produced a graph with a uniform node and edge type. As a result of the
transformation, one of the possible Complex Networks has been generated. In order
to find a representation of a terrorist organization as a complex network, we
should apply the algorithm presented in Fig. 6.12.
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Fig. 6.12. The transition between a semantic network and a complex network using ontology
filtering (Tarapata et al., 2010d)

Formally, we can write transformation T of the semantic network S into
a complex network S as follows (Tarapata et. al, 2010d):

FO
T:S,—S,, where FO describes filtering ontology from Fig.6.12, and:

.....

S, =<G1 =<N1,Al>,{ﬁl(n)}ie[lwupl},{h].l(a)}je{1 LH1}>, N1, A1 - sets of graph nodes and
ae A

neNy

arcs, respectively, f,,:N, —»Z, - the i-th function described on the graph nodes,

i=1,..LF,, (LF1 - number of node’s functions); h].1 A > Z - the j-th function
described on the graph arcs, j=1,...LH, (LHi-number of arc functions), Z, - any set

(e.g. types of vertices); S» - defined by analogy but it has a single function
described on the nodes and arcs:

S, = <G2 = <N2/ Az>/ {fz(n)}neNz ’ {hz(a)}ueAz >
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Next, the MWGSP approach may be used to analyse such a knowledge
representation. For example, in Fig. 6.13 we have a terrorist net that was prepared
and executed during the September 11, 2001 attacks (Krebs, 2000) and in Fig. 6.14
we have a subnet of a terrorist net that hijacked airplanes on the September 11,
2001 with two cases: a long time before hijacking (a) and a short time before
hijacking (b).
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Fig. 6.13. Terrorist net that prepared and executed the September 11, 2001 attacks (Krebs, 2000)

When we use the network from Fig. 6.14 as a "normal" communication between
terrorists then we can use the MIWGSP approach to recognize the threat situation
(structural similarity between the net from Fig. 6.14a and Fig. 6.14a (self-similarity)
is equal 0.990 and between the net from Fig. 6.14a and Fig. 6.14b is equal 0.880: this
difference can indicate a threat situation; we can also set a threshold value for
similarity changes, which in the opinion of experts, indicate a threat situation). We
can also use quantitative description of these networks (similar to Fig. 6.15) and
analyse them using MIWGSP approach.
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Fig. 6.14. Terrorist net that hijacked airplanes on the September 11, 2001: (a) a long time before
hijacking; (b) a short time before hijacking

Another application is presented in Fig.6.15. Here we have shown
a communication network (e-mails) in a company with a hierarchical structure (we
can consider, for example, a communication network inside a criminal/terrorist
organization by analogy). Nodes represent users/workers of the company. The
number inside each node describes the number of e-mails that were sent by users.
In Fig. 6.15a the e-mails net for a "normal" week has been presented. In Fig. 6.15b,
Fig. 6.15¢, Fig. 6.15d communications inside the company have been shown for
every week (for the fixed time window the length equals 1 week). Let us observe
that the 1st week is at least a similar week to a "normal" week (see Table 6.7: for the
1st week we obtain the smallest value of the scalar function H(G) from (5.27), which
combines a structural and a quantitative similarity to a "normal" week).

Fig. 6.15. E-mails net in hierarchical company: (a) "normal" week; (b) 1st week; (c) 2nd week;
(d) 3rd week
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Table 6.7. Values of scalar function H(G) combining structural (weight ¢1) and quantitative
(weight o) similarity measures between graphs representing the e-mail net during a "normal" week
and between 3 weeks from Fig. 6.15

Compared graphs Weights (on; o)
©;1) (0.5;0.5) | (1;0)
1st week net -0.694 0.144 1
2nd week net -0.646 0.177 1
3rd week net -0.643 0.160 1

The presented MIVGSP idea is an original attempt at integrating theories and
practices from many areas, in particular: semantic models, social networks, graph
and network theory, decision theory, data mining and security, as well as
multicriteria optimization. It utilizes the theoretical basis for a very practical
purpose of growing importance and demand: widely understood countering
terrorism. Moreover, the presented approach combines well-known structural and
rarely considered non-structural (quantitative) similarity between graphs as
models of objects and can significantly improve social network analysis. Our
models and methods of network analysis have been used in the criminal justice
domain to search large datasets for associations between crime entities in order to
facilitate crime investigation. Let us note that we can easily adopt centrality
measures from social networks to use them or their combinations instead s;; in
(5.17) (Bartosiak et al., 2011; Tarapata et al., 2010d). It is also possible to use MIWGSP
approach in medical applications to recognize of illness patterns (Ameljaniczyk,
2010a; 2010b). However indirect association and link analysis still faces many
challenging problems, such as information overload, high search complexity, and
heavy reliance on domain knowledge. In the papers (Antkiewicz et al., 2009a;
Kasprzyk, 2008; Tarapata & Kasprzyk, 2010e) have been shown why and how the
Complex Networks with the Scale Free and Small World feature can help optimize the
topology of communication networks. The first term - Scale Free feature - is a good
protection against random attacks (it is hard to hit a central node). The second term
- Small World feature - can dramatically affect communication among network
nodes. Thus both concepts and underlying theories are highly pertaining to the
presenting idea subject and objectives.

6.3.2. Specific Paths Planning Models

Specific paths planning models applied to crisis management systems, paths
planning for transport of hazardous materials have been described in other works
of the author (Tarapata, 1999c; 2000e; 2006b; 2008f; Tarapata & Daleki, 2008g;
Tarapata et al., 2009b; 2009d; Tarapata & Mierzejewski, 2010f).

One of the most important models being used for paths planning in many
applications (e.g. in crisis management systems) are time-dependent networks (TDN)



Z. Tarapata — Models and Algorithms for Knowledge-Based Decision Support and Simulation... 203

(Brodal & Jacob, 2004; Cooke & Halsey, 1996; Dean, 2004; Kaufman et al., 1993;
Orda & Rom, 1990; 1991; 1996; Sherali et al., 1998; Tarapata, 1999c; 2000e; 2008f;
Wellman et al., 1995; Wu et al., 2005). TDN is the network in which at least one
function (described on the arcs and/or on the nodes) depends on time. For
example, in a road traffic network travel time between two crossroads i and k
(nodes of the network) depend on the starting time in the i-th crossroad. This time
depends on: traffic lights configuration, traffic jams, current road load (different
values in peak hours and outside peak hours), etc. Let us note that network S,(t)
defined in chapter 2.3 is time-dependent, too.
In generality, a time-dependent network S(f) can be defined as follows:

S(t)=(G, D, D(t)) 6.1)

where: G=(V;,A;)- Berge's graph (sometimes, we define G(t) instead G for
dynamically changed structure of the network), V- set of G nodes (e.g.

crossroads), A. €V, xV_-set of G arcs (links) (e.g. road parts between crossroads),
A=G = A, 7; =V, D(t)={d, (t):(i,k)e A;} - set of delay functions, d,(t)- delay

function between nodes i and k, ' kZA d,:T—T,T- set of moments, T=[0,c). The

function d, (t) describes the time value, which is needed to travel between nodes

i and k taking into account that the starting moment from node i is equal to t.

We define two types of link (arc) models (Orda & Rom, 1990):

® frozen link model - time and cost of travel by a link is constant, i.e. when we start
from i to k in the moment of f,, we need exactly a time of d,(f,) and we can

achieve the k node in the moment t, =t,+4d,(t,);

o clastic link model - time cost of travel by a link is changeable, i.e. when we start
from i to k in the moment of ¢, we will achieve the k node in such a first

moment of t, >¢,, that the following formula is fulfilled: t, —t, >d, (t,).

Additionally, two different types of link models are considered (Orda & Rom,
1990):

® FIFO link model - for arc (i,k) the following formula is satisfied:

Vb d ()2 b+ (1) (62)

t >ty
* non-FIFO link model - for arc (i,k) the following formula is satisfied (see
Fig. 6.16):

3t +dy (8) <ty +dy(t) (6:3)

t >ty

It is important to note, that the elastic link is always a FIFO link, but the frozen link
cannot be a FIFO link. If all arcs of S(t) are FIFO links, then network S(f) is a FIFO
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network. Otherwise we have a non-FIFO network. Most often in practice we have
FIFO networks. In non-FIFO networks we can start later and achieve the destination
node earlier than usually (see Fig. 6.16).
From the non-FIFO property result three different politics of travel across the
network (Orda & Rom, 1990; 1991):
* unrestricted waiting - unrestricted waiting is permitted in all nodes of the
network (like in the public transportation network: e.g. bus-stops can be
a "depository" where a traveller can wait for a good bus);
® forbidden waiting - waiting is prohibited in all nodes of the network;
® source waiting - waiting is prohibited in all nodes of the network excluding the
source node.
For the case in which the waiting is permitted, the function Di(t) describing the
travel time from node i to node k with an optimal waiting time in node i is defined
as follows (see Fig. 6.16):
D, (t)=min{r+4d,(t +7)} (6.4)

720

A diy(t) — -
5
A Duft) 55 . ‘f%HJE. 14

dutlz) 2 1

Fig. 6.16. Graph of the function di(t) and related to this the function Di(t) (see (6.4)). Function di(t)
describes the non-FIFO arc, because, for example, for t:>to: t, +d, (t,) < t, +d,(t,) (4+2<1+9,5)

In the paper (Tarapata, 2006a) a routing problem in computer networks
(similar to path planning in road networks) with a non-FIFO model of the network
as well as permitted and prohibited waiting in nodes (two different cases) has been
considered. The modified Dijkstra's algorithm with the arc function di(t) (or in the
second case Di(t)) based on the approach presented in (Orda & Rom, 1990) has
been used. Functions dix(f) or Dik(t) have forms, which allow accommodating to the
predicted network load (capacity) by using the network load prediction model
with piecewise linear function based on historical load (see details in (Tarapata,
2006a)). Computational complexity of the algorithm is the same as the Dijkstra's
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(with the assumption that we have the di(t) function) that is O(AlogV). Practical

examples of using the method in transportation threat prediction, identification
and countering have been considered in details in (Tarapata, 2006c; 2007c; Tarapata
et al., 2009b; 2009d; Tarapata & Mierzejewski, 2010f).

Another interesting traffic model, which can be used to model transportation
threats (e.g. transport of hazardous materials) and borrowed from car navigation
systems is the simplest path model (Duckham & Kulik, 2003; Mark, 1986). The
simplest path algorithm does not use distance or any other metric information. The
algorithm computes the simplest paths using only a measure of intersection
(navigation instruction) complexity proposed in the work (Mark, 1986). Intersection
complexity is classified into frames, each frame having several slots for different
elements of an intersection. A generic turn intersection is modelled as
a frame containing a total of 9 slots. Each slot covers information on whether to
turn left or right (3 slots), how to recognize the moment to turn (2 slots), how to
recognize if the navigator has gone too far (1 slot), and a summary information
providing an overview of the turn (3 slots). We can note that the greater value of
the measure the more complicated the description of the intersection; hence the
simplest path is such that the total value of the intersection complexity measure for
all nodes belonging to a path is minimal among other paths. This measure can be
treated as a kind of penalty for intersection crossing. In context of transportation
threats this measure may describe a manoeuvre risk on the intersection. In
particular, if we plan a transport of hazardous materials then one of the
minimization criteria may be the total manoeuvre risks on a path. Therefore, in this
case we may find the simplest path for which the total manoeuvre risk is minimal.
Authors of the paper (Duckham & Kulik, 2003) have proposed some modifications
of the approach presented by Mark. In the paper (Tarapata et al., 2009d) it has been
shown how to use the idea of simplest paths to plan hazardous materials
transportation.

One of the methods to find the simplest path is the definition of transformation u
from graph G=(V,E) to graph G'=(E’,€). The set of nodes E” in G is created from the
set of arcs E in G where direction of arcs are ignored (i.e. (v;,vj)=(v;,v;) in E’), but

((4y,1,),(v,,,)) € €, if both v1 and v are achievable from u; and u2 in G (see Fig.

6.17). Arc cost function c will have an interpretation of the intersection complexity
measure. To find the simplest path from v in G we must find the shortest path from
any node of G’, which contains v, using the arc function c.

The presented algorithm can be considered in two stages: (1) transformation from
G to G" and (2) finding the shortest paths from the source node to the destination
using one of the shortest paths algorithms, e.g. the Dijkstra's algorithm.

Complexity of this algorithm is equal O(mn+m'logn'), where n, n' - number of

nodes in G and G', m, m' - number of arcs in G and G', respectively.
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Fig. 6.17. Transformation x of G in G’ (Duckham & Kulik, 2003)

To model the problem of hazardous (e.g. chemical) materials transportation
the disjoint path planning models are also used to minimize risk of a potential
accident and chemical threats. Then, we can use algorithms presented in chapter
3.4 to solve the problem. The other important problems related to hazardous
materials transportation and algorithms to solve them are presented in the works
(Berman et al., 2007; Bianco et al., 2009; Carotenuto et al., 2007a; 2007b; Chen et al.,
2008; Cox, 1984; Erkut et al., 2003; Wijeratne et al., 1993).

Presented models and algorithms can be also used in selected problems for
modelling and optimization of transportation systems (Ambroziak, 1998; Jacyna,
2009).
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